Hardness of Approximation

Irit Dinur
Weizmann Institute of Science

Approximation

It's in our nature

- Grades for students
- Decisions about accepting a paper
- Medical decisions
- Political \& economic decisions

It's frustrating

- Because of the gap

It's sometimes (NP-)hard, so

- We shouldn't be blamed for this gap
- We should understand which instances are easy, and which are hard

Approximation

- Throughout 70's-80's: many optimization problems discovered to be NP-hard
- Natural to seek approximate solutions. (Almost no known lower bounds)

OPTIMIZATION

- Max-LINEQ: satisfy the largest number of linear equations.
- Max-3-col: color the vertices with 3 colors, maximizing number of two-colored edges.
- Max-3SAT: assign Boolean variables in a 3CNF formula, maximizing number of satisfied clauses.
- All of these problems are NP-hard (yes, even Max-LINEQ!)

APPROXIMATION

- satisfy at least $\alpha \cdot$ OPT of the equations.
- satisfy at least $\alpha \cdot$ OPT of the edge constraints.
- satisfy at least $\alpha \cdot$ OPT of the clauses.
- Complexity depends on the problem, and on α

NP hard problem: 3-Colorability

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is in 3 -Colorability if there a vertex-coloring with 3 colors, where every edge sees different colors

Theorem 1: 3-CoLorability is NP-complete [Karp 1972]
Approximate? We can aim to approximate OPT(G) = maximal fraction of edges sat are satisfied by a 3-coloring.
An $(1-\epsilon)$ - approximation algorithm outputs a value α

$$
(1-\epsilon) \cdot O P T(G) \leq \alpha \leq O P T(G)
$$

Theorem 2: 3-Colorability is NP-hard to approximate (i.e. an approximation algorithm implies $\mathrm{P}=\mathrm{NP}$)

PCP theorem

Theorem:
There is a poly-time algorithm R converting G to H , such that

G is 3 -colorable
G is not 3-colorable
$\rightarrow \mathrm{H}$ is 3-colorable
$\rightarrow \mathrm{H}$ has value $<1-\epsilon$ (every coloring fails at least ϵ edges)

Corollary: This rules out $1-\epsilon$ approximation for 3-Colorability

Proof:

Assume Max-3COL had a $1-\epsilon$ approximation algorithm A.
We construct a polytime algorithm for 3-Colorability (thus $\mathrm{P}=\mathrm{NP}$, a contradiction). Given a graph G, run the algorithm R above to get H, and then run A on H.
If $A(R(G))=A(H) \geq 1-\epsilon$, say $Y E S$, otherwise say $N O$.

Graphs don't typically have a 3-Colorability gap

Graphs don't typically have a 3-Colorability gap

G is almost 3 colorable: can color vertices so that only one edge fails

Landscape of a robust graph

PCP as a robustification algorithm

- Approach: Embed G in robust graph H
- PCP theorem: There is an algorithm for transforming G to H s.t.
- G is 3-colorable iff H is 3 -colorable
- H is c-robust
- In particular: if G isn't 3-colorable, then every 3-coloring for H violates C fraction of edges

How easily can proofs be checked?


```
The Riemann Hypothesis
is true (12'th Revision)
By
Ayror Sappen
# Pages to follow:
15783
```

