Uses of randomness in computation

- algorithms (randomized P)
- "complaxity-theoretic" algorithms (randomized NP)
- (circuit) lower bound proofs
- cryptography \& pseudorandomness
- derandomization
- learning algorithms
- average case complexity

$$
\begin{gathered}
\text { Distribution } \\
\text { over strings } \\
U_{n}: \forall x \in\{0,1\}^{n} \\
U_{n}(x)=\operatorname{Pr}\left[x \sim U_{n}\right]=\frac{1}{2^{n}}
\end{gathered}
$$

1000101100111 0011011100101

Shannon's Entropy
Kolmogorov Complexity

Shannon's Entropy

$$
\begin{aligned}
H\left(\partial_{n}\right) & =\underset{x \sim \gamma_{n}}{\mathbb{E}}\left[\log \frac{1}{\gamma_{n}(x)}\right] \\
& =\sum_{x \in\{0,1\}^{n}} \partial_{n}(x) \cdot \log \frac{1}{\gamma_{n}(x)} \\
H\left(U_{n}\right) & =n
\end{aligned}
$$

"most" random dist.

Kolmogorov Complexity $K(x)=\min \{|(\mu, \omega)|:$
TM M on Input w points out x.

$$
K(x) \geqslant|x|
$$

"most" random string

Universal Derandomization
Given a BPP algorithm $M(x, r)$,
for every $x \in\{0,1\}^{n}$, want to estimate

$$
\underset{r \sim U_{m}}{\operatorname{pr}_{r}[M(x, r) \text { accepts }] \pm \varepsilon} \begin{array}{r}
\\
\\
(\varepsilon=1 / 10)
\end{array}
$$

with little (no) randomness.
Idea: For x, find some \searrow_{m} (of small support), such that
X_{m} e-fools $M(\underline{x}, \cdot)$ for a given x
more ambitiously: ε-fool $M(x, \cdot)$ for all x
Observe: $M(x, r)$ in time $t(|x|)$
$\Rightarrow \forall x, \exists$ cirmit $C_{x}(r)$ of size $\tilde{0}(t(|x|))$
Hence, sufficient to e-fod all circuits

$$
\text { of size } S \leq \tilde{O}(t)
$$

Psendorandom Generator (PRG):

$G:\{0,1\}^{l} \rightarrow\{0,1]^{m}$ is E-PRQ against size S if \forall arcuit $C,|C| \leq s$

$$
\left|\operatorname{Pr}_{r \sim U_{R}}[C(G(r))=1]-\operatorname{Pr}[C(w)=1]\right| \leq \varepsilon
$$

also, require G to be computalle in time $2^{O(l)}$.

To estimate $\operatorname{Pr}_{w a m}[C(w)=1]$
compute $\underset{r \sim U_{l}}{\operatorname{Pr}}[C(G(r))=1]$
in Ret. time $2^{O(l)} \cdot \operatorname{poly}(|C|)$.

Goal: $\varepsilon-P R G \quad G:\{0,1\}^{l} \rightarrow\{0,1\}^{m}$
for $l \leq 0(\log (m / \varepsilon))$.
Non-constructively, such a G exists.
Open Question: Construct (any nontrivial) such G.
Why is it so hard to construct a PRG?
(because it implies circuit bower bounds!)
Observation: Suppose have PRG $G:\{0,1\}^{l} \rightarrow\{0,1\}^{m}$ secure against size m circuits.
Define $f:\{0,1\}^{l+1} \rightarrow\{0,1\}$:

$$
r \cap: 1 \quad a=\sin _{17^{\ell}} \quad G(2) \|=x
$$

$$
f(x)= \begin{cases}0 & \text { if } \exists z \in\{0,1\}^{\ell} \quad G(z) \\ 1 & \left.\right|_{[1 . . l+1]}=x \\ \text { otherwise }\end{cases}
$$

Note: (1) $f(G(z))=0 \quad, \forall z \in\{0,1\}^{e}$
(2) $\operatorname{pr}_{x \sim U_{l+1}}[f(x)=1] \geqslant \frac{1}{2}$

Hence, $f \&$ Size $[m]$
For $l \leq O(\log m), \quad f \notin$ Size $\left[2^{\circ(l)}\right]$
but $\quad f \in \operatorname{Time}\left[2^{O(l)}\right]$.

So, \exists PR $G:\{0,1\}^{0(\log m)} \xrightarrow{\longrightarrow}\left\{0_{1} 1\right\}^{m}$

$$
\Rightarrow \quad E \nsubseteq \operatorname{Size}\left[2^{0(n)}\right]
$$

(Recall: PIT $\in P \Rightarrow$ circuit bour e bounds for NEXP) or permanent.
actually, have an equivalence!
Thm [Impaglia 33°, Wigderson 197]:

$$
\begin{aligned}
& \text { ЭPRG G:\{0,1\} }\}^{(\text {engml }} \rightarrow\{0,1\}^{m} \Leftrightarrow \\
& \text { 于 } L \in E \text { s.t. } L \text { requires cirmit size } 2^{\Omega(n)} .
\end{aligned}
$$

Interpretation: truth talle of HARD boolean function
psendorandom distribution of strings
Duturition: $\begin{gathered}\text { HSG } \\ \text { RRG }\end{gathered}$ from a Kolmogorov-incompressible string
assume:

$|C|=m$, on m inputs

$$
\operatorname{Pr}_{w \sim}[C(w)=0] \leqslant \frac{1}{2^{\sqrt{m}}}
$$

$$
\begin{aligned}
\forall w \in\{0,1\}^{m}, & C(w)=0 \Rightarrow \\
& K(w \mid C) \leq \operatorname{loa}\left(2^{m-\sqrt{m}}\right)+0(1)
\end{aligned}
$$

$$
\begin{aligned}
K(w \mid C) & \leq \log _{2}\left(2^{m-s_{m}}\right)+0(1) \\
& \leq m-\sqrt{m}+O(1)
\end{aligned}
$$

So, C must accept a sting of high (conditional) Kolmogarov complexity!

$$
K^{2^{O(m)}} \text { suffices, but still... }
$$

Want a much more efficient compression of W if a PRG based on w fails to fool some C. want a "small" circuit for W.

Yo's "distinguisher \rightarrow predictor" idea:

Yo's "distinguisher \rightarrow predictor" idea:
Suppose a circuit $C:\{0,1\}^{\mathrm{m}} \rightarrow\{0,1\}$
ε-distinguishes a distribution γ_{m} from U_{m} :

$$
\operatorname{Pr}\left[C\left(\gamma_{m}\right)=1\right]-\operatorname{Pr}\left[C\left(U_{m}\right)=1\right]>\varepsilon
$$

Hybrid argument:
tofine distribution $H^{i}=\underbrace{\gamma_{m}}_{i} \underbrace{U_{m}}_{m-i}$
[sample $w \sim \partial_{m}$; output i-length prefix of w, followed by $m-i$ unit. rand. bits]

$$
\operatorname{Pr}\left[C\left(\Delta_{m}\right)=1\right]-\operatorname{Pr}\left[C\left(U_{m}\right)=1\right]
$$

$$
\begin{aligned}
& =\operatorname{Pr}\left[C\left(H^{m}\right)=1\right]-\operatorname{Pr}\left[C\left(H^{0}\right)=1\right] \\
& =\operatorname{Pr}\left[C\left(H^{m}\right)\right]-\operatorname{Pr}\left[C\left(H^{m-1}\right)\right] \\
& +\operatorname{Pr}\left[C\left(H^{m-1}\right)\right]-\operatorname{Pr}\left[C\left(H^{m-2}\right)\right] \\
& +\operatorname{Pr}\left[C\left(H^{\prime}\right)\right]-\operatorname{Pr}\left[C\left(H^{0}\right)\right]>\varepsilon
\end{aligned}
$$

By averaging, $\exists 1 \leq i \leq m$ st.

$$
\begin{gathered}
\operatorname{Pr}\left[C\left(H^{i}\right)\right]-\operatorname{Pr}\left[C\left(H^{i-1}\right)\right]>\frac{\varepsilon}{m} \\
\underbrace{\delta_{m}}_{i}>\text { vs. } \underbrace{\gamma_{m}}_{i-1} \$ \ldots
\end{gathered}
$$

Predictor for the $i^{\text {th }}$ bit of γ_{m} given the previous (i-1) bits $z_{1} \ldots z_{i-1}$:
(given the previous (i-1) bits $z_{1} \ldots z_{i-1}$:
sample $b_{i}, b_{i+1}, \ldots, b_{m}$ uniformly at random. If $C\left(z_{1}, \ldots, z_{i-1}, b_{i}, b_{i+1}, \ldots, b_{m}\right)=1$ then output b_{i}
else output $7 b_{i}$
... is correct with prob. $\geqslant \frac{1}{2}+\frac{\varepsilon}{m}$
(Exercise.)
\qquad
NW ORG
for any $f:\{0,1\}^{n} \rightarrow\{0,1\}$
define $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$:

$$
G(z)=z_{z_{1} \ldots z_{n}} f_{1}(z)
$$

If some $C:\{0,1\}^{n+1} \rightarrow\{0,1\}$
ε-distinguishes G from U_{n+1},
ε-distinguishes G from U_{n+1}, then a circuit of size $\approx|C|$ computes f on $\geqslant \frac{1}{2}+\frac{\varepsilon}{n+1}$ inputs.
That rs, \& is "easy" on average.
Why?

Upshot: \& is "very hard" on average $\Rightarrow P R G$ but with only 1-bit stretch.

How to get a PRG with a better stretch?
Idea 1: Direct Product Generator f^{k} :

$$
G\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{1} x_{2} \ldots x_{k} f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{k}\right)
$$

$$
G\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{1} x_{2} \ldots x_{k} f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{k}\right)
$$

where each $x_{i} \in\{0,1\}^{n}$.
Still secure if f is "very hard" on average.
Stretch: n.k $\mapsto n \cdot k+k$ still very poor!
Odea 2: "Derandomize" $\searrow P$ Generator above, using designs:

$$
\begin{aligned}
& S=\left(S_{1}, S_{2}, \ldots, S_{m}\right) \\
& \text { each }\left|S_{i}\right|=n \\
& \cdot \quad \forall i \neq j, \quad\left|S_{i} \cap S_{j}\right| \leq d \\
& \cdot \quad \text { each } S_{i} \subseteq\{1,2, \ldots, l\} \quad \mathbb{R}_{\text {minimizize }}
\end{aligned}
$$

NW PRG $G^{\dagger}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}:$
\forall seed $z \in\{0,1\}^{l}$

$$
G^{f}(z)=f\left(\left.z\right|_{S_{1}}\right) \ldots f\left(\left.z\right|_{S_{m}}\right)
$$

Construction of designs: Given n, d, can construct design $\left(S_{1}, \ldots, S_{m}\right)$

$$
\begin{aligned}
& -\left|s_{i}\right|=n, \forall i \\
& -\left|S_{i} \cap S_{j}\right|^{\prime} \leq d, \quad \forall i \neq j \\
& -l \leq O\left(\frac{n^{2}}{d}\right), \quad m=2^{d / 10}
\end{aligned}
$$

in time $\leq 2^{0(l)}$. [Greedy algorithm]
Example:

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}, d=\frac{n}{10} \Rightarrow G^{d}:\{0,1\}^{0(n)} \rightarrow\{0,1\}^{2^{n / 100}}
$$

exponential stretch!!!
Security $a_{n a l y s i s: ~} m=2^{n / 100}$.
Ciranit C of size m E-"breaks" $G^{f}: O(n) \mapsto m$ $\Rightarrow \quad \exists$ circuit $R,|R| \leq m+m \cdot\left(2^{n / 5} \leq 2\right.$, st.

$$
\operatorname{Pr}_{x \sim U_{n}}[R(x)=f(x)] \geqslant \frac{1}{2}+\frac{\varepsilon}{2^{n / 100}}
$$

Why?

Need $f:\{0,1\}^{n} \rightarrow\{0,1\}$ exponentially hard an average!
Corollary [Nisan, Wigderson]:
E has a language of exp. averagee-ease hardness

$$
\Rightarrow B P P=P .
$$

Thu [IW, STV]:
E has a language of exp. average-ease hardness $\Leftrightarrow E$ has a language of exp. worst-case hardness. [using hist-decodalle ECC]
using ast-decoanste EL〕」
sit-orade
Corollary: E requires fruit size $2^{\Omega(n)}$

$$
\Rightarrow B P P=P \text {. } \quad \Rightarrow \text { so, } M A=N P \text {. }
$$

Other hardness-randomness trade-affs can be also proved, egg,
Thu $[B F N W]:$ EXP \nsubseteq PolySize

$$
\Rightarrow \quad \forall \varepsilon>0, \quad B P P \leq \text { i. }- \text { - Time }\left[2^{n^{\varepsilon}}\right] \text {. }
$$

Some Applications

Easy Witness Lemma [IKW]:
Suppose NEXP \subseteq Poly Size.
Then, $\forall L \in N T i m e\left[2^{n^{c}}\right]$
with verifier $V:\{0,1\}^{n} \times\{0,1\}^{2^{2}} \rightarrow\{0,1\}$
$\exists d \geqslant 0$
$\forall x \in L$ of sufficiently large length n
$\forall x \in L$ of sutficiently large length n
\exists circuit $T:\{0,1\}^{n^{c}} \rightarrow\{0,1\}$ of sije $\leq n^{d}$ s.t. $V(x$, truth table $(T))=1$.

Proof: Suppose not.
$\exists \mathrm{L} \in$ NTime $\left[2^{"}\right]$
$\forall d \geqslant 0$
\exists infiniticly many $x \in\{0,1\}^{n}$
s.t. $x \in L$ but every withess $y \in\{0,1\}^{2^{c}}$ requires cirmit siga $>\mathrm{n}^{\text {d }}$.
Oversimplitying:
(1) Can norsinphinterministically guess super.pody-hard t.t.
(2) Via $[B F N W]$, can derandomize

$$
M A \subseteq \text { NSUBEXP. }
$$

(3)

$$
\begin{aligned}
& \text { NEXP } \subseteq P \text { Poly Size } \\
\Rightarrow & \text { EXP } \subseteq P_{0} l y S_{i z e} \\
\Rightarrow & \text { EXP }=M A \quad \text { Karp-Lipton] }
\end{aligned}
$$

(4) EXP $=M A \subseteq$ NSUBEXP

$$
\text { (5) NEXP } \begin{aligned}
& \text { Poly Size } \Longrightarrow
\end{aligned} \quad \text { NSUBEXP } \subseteq \text { Size }\left[n^{k}\right] .
$$

(4)

$$
\begin{aligned}
+(5) & \Longrightarrow \\
\exists k>0, & \text { EXP } \leq \text { Size } \\
& {\left[n^{k}\right] . \text { Contradiction } } \\
& \text { (via diagonalization). }
\end{aligned}
$$

Corollary: NEXP \subseteq PdySize \Leftrightarrow EXP $=M A$.

Summary
Randomness is useful

- for algorithms
- for reasoning about complexity classes

Psendo-randomness ミ Circuit lower bounds

Pseudo-randomness vs. Learning

