Algebraic complexity

EPIT 2023 : Le Kaléidoscope de la Complexité

Guillaume Malod June 12–16 2023 Oléron Island (France)

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

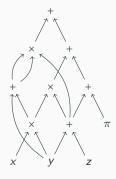
Lower bounds

A general lower bound

Restricted computations

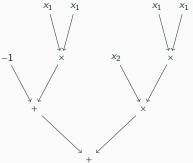
Lower bound strategy

- Dense representation
- Sparse representation
- Arithmetic formulas: $(x_1 + y_1) \times \cdots \times (x_n + y_n)$
- Arithmetic circuits



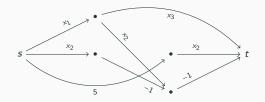
- Size of a circuit: number of gates or edges...
- Arithmetic circuit of size 12 computing
 (xy + y)(xy + y) + (xy)(y + z)((y + z) + π)
- Depth: length of a longest path from root to leaf

- Weak model: each subcomputation can be used only once.
- Underlying graph = tree.



Algebraic Branching Program (ABP)

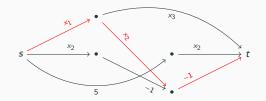
 DAG from a source s to a sink t with arcs labelled by constants or variables.



- Weight of a path = product of the labels.
- Polynomial computed by the ABP = sum of the weights of all paths from s to t.

Algebraic Branching Program (ABP)

 DAG from a source s to a sink t with arcs labelled by constants or variables.



- Weight of a path = product of the labels.
- Polynomial computed by the ABP = sum of the weights of all paths from s to t.

$$\overline{z} = (z_{i,j})_{1 \le i,j \le n}$$

$$\det(\bar{z}) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n z_{i,\sigma(i)}$$

$$per(\bar{z}) = \sum_{\sigma \in S_n} \prod_{i=1}^n z_{i,\sigma(i)}$$

$$hc(\overline{z}) = \sum_{\substack{\sigma \in S_n \\ \sigma \text{ is a cycle}}} \prod_{i=1}^n z_{i,\sigma(i)}$$

- Only consider sequences of polynomials with polynomially bounded degree
- A sequence of polynomials (f_n) → existence of a "small" sequence (C_n) such that C_n computes f_n
- VP: sequences computable by a sequence of circuits of polynomially bounded size
- $\mathrm{VP}_e\colon$ sequences computable by a sequence of formulas of polynomially bounded size
- VBP: sequences computable by a sequence of ABPs of polynomially bounded size
- $VP_e \subseteq VBP \subseteq VP$

• VNP: $(f_n) \in \text{VNP} \text{ if } \exists (g_n) \in \text{VP}$:

$$f_n(\bar{z}) = \sum_{\epsilon \in \{0,1\}^{q(n)}} g_n(\bar{z},\epsilon)$$

• For the permanent:

$$per(\overline{z}) = \sum_{\overline{\epsilon} \in \{0,1\}^{n^2}} \text{test}(\overline{\epsilon}) \cdot \prod_{i=1}^n \left(\sum_{j=1}^n \epsilon_{i,j} Z_{i,j} \right)$$

• VNP: $(f_n) \in \text{VNP}$ if $\exists (g_n) \in \text{VP}$:

$$f_n(\bar{z}) = \sum_{\epsilon \in \{0,1\}^{q(n)}} g_n(\bar{z},\epsilon)$$

• For the permanent:

$$per(\bar{z}) = \sum_{\bar{\epsilon} \in \{0,1\}^{n^2}} \left(\prod_{\substack{1 \le i,j,k,l \le n \\ i = k \text{ iff } j \neq l}} (1 - \epsilon_{i,j} \epsilon_{k,l}) \right) \cdot \left(\prod_{i=1}^n \sum_{j=1}^n \epsilon_{i,j} \right) \cdot \prod_{i=1}^n \left(\sum_{j=1}^n \epsilon_{i,j} Z_{i,j} \right)$$

• VNP: $(f_n) \in \text{VNP} \text{ if } \exists (g_n) \in \text{VP}$:

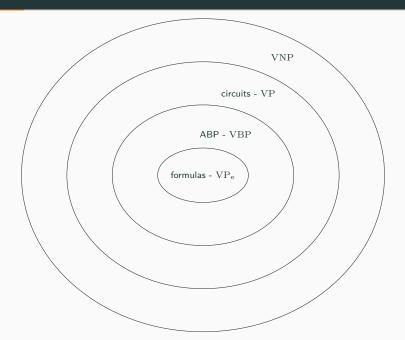
$$f_n(\bar{z}) = \sum_{\epsilon \in \{0,1\}^{q(n)}} g_n(\bar{z},\epsilon)$$

For the permanent:

$$per(\bar{z}) = \sum_{\bar{\epsilon} \in \{0,1\}^{n^2}} \left(\prod_{\substack{1 \le i, j, k, l \le n \\ i = k \text{ iff } j \neq l}} (1 - \epsilon_{i,j} \epsilon_{k,l}) \right) \cdot \left(\prod_{i=1}^n \sum_{j=1}^n \epsilon_{i,j} \right) \cdot \prod_{i=1}^n \left(\sum_{j=1}^n \epsilon_{i,j} Z_{i,j} \right)$$

- Intuitively, all polynomials where the coefficient function is in GapP/poly
- Exercise: show that $hc \in VNP$
- Bonus exercise: use dynamic programming to give an O(n2ⁿ) circuit for per; compare with Wikipedia (Ryser)

Classes



- Main open question: VP =? VNP
- Somewhat related to P =? NP

Theorem (P. Bürgisser)

Under (GRH), VP = VNP over \mathbb{C} implies P/poly = NP/poly.

- per is VNP-complete over fields of characteristic $\neq 2$
- hc is VNP-complete
- det is VBP-complete
- VBP vs VNP becomes det vs per

- A polynomial *f* is a *projection* of a polynomial *g* if $f(\bar{x}) = g(a_1, ..., a_m)$, where the a_i are elements of the field or variables among $x_1, ..., x_n$
- A sequence (f_n) is a *p*-projection of a sequence (g_n) if there exists a polynomially bounded function t(n) such that f_n is a projection of g_{t(n)} for all n
- A sequence of polynomials (f_n) ∈ C is C-complete if any sequence of polynomials (g_n) ∈ C is a p-projection of (f_n)

Theorem

The sequence (per_n) is VNP-complete over any field of characteristic different from 2.

Corollary

Over any field of characteristic different from 2, VP = VNP iff per $\in VP$.

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

- 1. $VNP_e = VNP$
- 2. The permanent is universal for formulas
- 3. The permanent can "eliminate" boolean sums

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

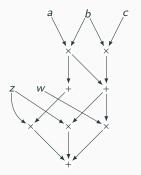
Restricted computations

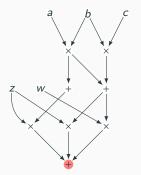
Lower bound strategy

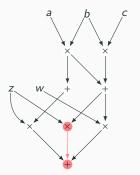
- (f_n) ∈ VP_e if there exists a sequence of formulas (F_n) of polynomially bounded size such that F_n computes f_n.
- (f_n) ∈ VNP_e if there exists a polynomial p and a sequence g_n ∈ VP_e such that:

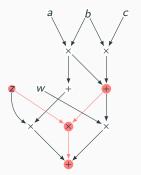
$$f_n(\bar{x}) = \sum_{\bar{\epsilon} \in \{0,1\}^{p(|\bar{x}|)}} g_n(\bar{x},\bar{\epsilon}).$$

- $VP_e \subseteq VP$ and $VNP_e \subseteq VNP$
- Whether $VP_e = VP$ or not is still open
- Valiant showed that VNP_e = VNP
- Is it enough to show that $VP \subseteq VNP_e$
- Reduction of CircuitSAT to SAT









Parse trees

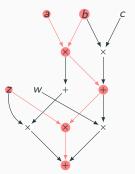


Figure 1: val(T) = zab

- Each parse tree computes a monomial.
- The polynomial f(z) computed by the circuit is $\sum_{T} val(T)$

•
$$f(z) = \sum_{\bar{\epsilon} \in \{0,1\}^s} \operatorname{test}(\bar{\epsilon}) \operatorname{val}'(\epsilon, z)$$

Introduction and basic definitions

Completeness of the permanent

 $\rm VNP_e$ = $\rm VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

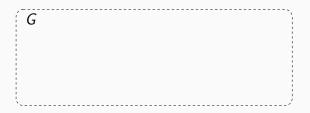
A general lower bound

Restricted computations

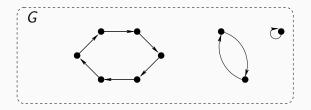
Lower bound strategy

- If *G* is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of *G*
- If *G* is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of *G*

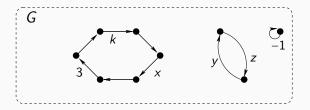
- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If *G* is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of *G*



- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If *G* is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of *G*

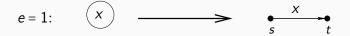


- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If *G* is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of *G*

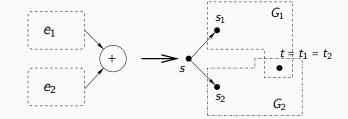


If f is a polynomial computed by a formula of size e, then there exists an ABP G of size e + 1 computing f.

If f is a polynomial computed by a formula of size e, then there exists an ABP G of size e + 1 computing f.

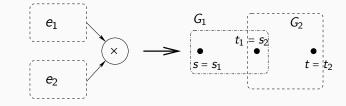


If f is a polynomial computed by a formula of size e, then there exists an ABP G of size e + 1 computing f.



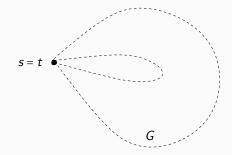
If f is a polynomial computed by a formula of size e, then there exists an ABP G of size e + 1 computing f.

 $e = e_1 \times e_2$:

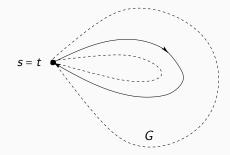


If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that f = per(M).

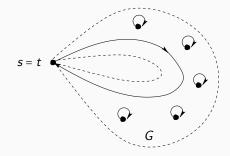
If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that f = per(M).



If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that f = per(M).



If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that f = per(M).



Outline

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 VBP -completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

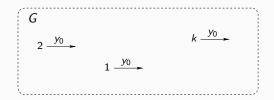
Lower bound strategy

Non-commutative computations

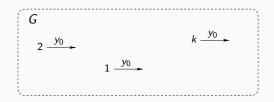
• Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$

- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀

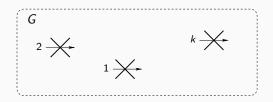
- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀
- $g_n(\bar{x}, y_0)$ is a permanent, so it is the weight of the cycle covers of a graph G



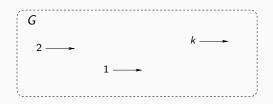
- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀
- $g_n(\bar{x}, y_0)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_n(\bar{x}, 0) + g_n(\bar{x}, 1)$ as a permanent



- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀
- $g_n(\bar{x}, y_0)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_n(\bar{x}, 0) + g_n(\bar{x}, 1)$ as a permanent
- g_n(x
 , 0) is the sum of the weights of the cycle covers which *do not* use any of the edges



- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀
- $g_n(\bar{x}, y_0)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_n(\bar{x}, 0) + g_n(\bar{x}, 1)$ as a permanent
- g_n(x
 ,0) is the sum of the weights of the cycle covers which *do not* use any of the edges
- For each subset S ⊆ {1,...,k}, let W_S be the weight of the cycle covers using exactly the edges numbered in S Then: g_n(x̄, 1) = ∑_{S∈{1},...,k}</sub> W_S

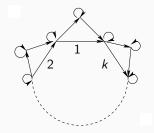


- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀
- $g_n(\bar{x}, y_0)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_n(\bar{x}, 0) + g_n(\bar{x}, 1)$ as a permanent
- g_n(x
 ,0) is the sum of the weights of the cycle covers which do not use any
 of the edges
- For each subset $S \subseteq \{1, \ldots, k\}$, let W_S be the weight of the cycle covers using exactly the edges numbered in SThen: $g_n(\bar{x}, 1) = \sum_{S \subseteq \{1, \cdots, k\}} W_S$
- With this notation, $g_n(\bar{x},0)$ is W_{\varnothing}

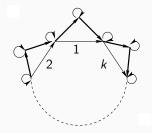
- Suppose $(f_n) \in \text{VNP}$, then $f_n(\bar{x}) = \sum_{\bar{\epsilon}} g_n(\bar{x}, \bar{\epsilon})$, with $(g_n(\bar{x}, \bar{y})) \in \text{VP}_e$
- Suppose there is only one variable y₀
- $g_n(\bar{x}, y_0)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_n(\bar{x}, 0) + g_n(\bar{x}, 1)$ as a permanent
- g_n(x
 ,0) is the sum of the weights of the cycle covers which do not use any
 of the edges
- For each subset $S \subseteq \{1, \ldots, k\}$, let W_S be the weight of the cycle covers using exactly the edges numbered in SThen: $g_n(\bar{x}, 1) = \sum_{S \subseteq \{1, \cdots, k\}} W_S$
- With this notation, $g_n(\bar{x},0)$ is W_{\varnothing}

• And
$$g_n(\bar{x},0) + g_n(\bar{x},1) = 2W_{\varnothing} + \sum_{\substack{S \subseteq \{1,\cdots,k\}\\S \neq \varnothing}} W_S$$

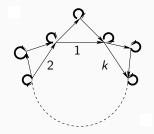
• A directed graph with 2k vertices, 3k edges and 2k loops



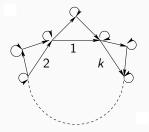
- A directed graph with 2k vertices, 3k edges and 2k loops
- There are exactly two cycle covers which do not go through any of the edges 1, 2, ..., k

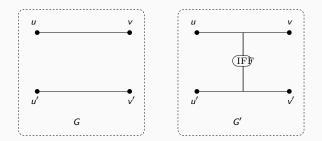


- A directed graph with 2k vertices, 3k edges and 2k loops
- There are exactly two cycle covers which do not go through any of the edges 1, 2, ..., k



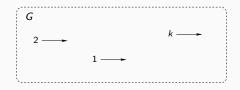
- A directed graph with 2k vertices, 3k edges and 2k loops
- There are exactly two cycle covers which do not go through any of the edges 1, 2, ..., k
- For each non-empty subset of {1,...,k} there is exactly one cycle cover which goes through exactly the specified edges

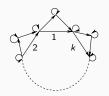




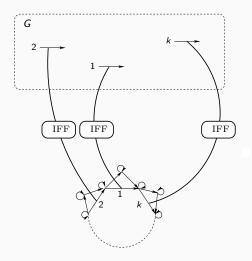
The permanent of G' is the sum of the weights of all cycle covers of G which contain both edges (u, v) and (u', v') or neither.

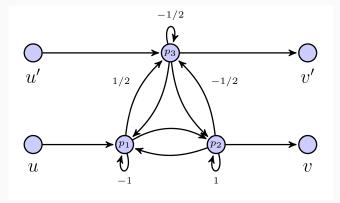
Bringing everything together





Bringing everything together





Source: Ramprasad Saptharishi

Outline

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

$\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

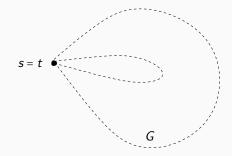
Non-commutative computations

Universality for ABPs

• det
$$(\bar{z}) = \sum_{\sigma \in S_n} \epsilon(\sigma) z_{1,\sigma(1)} \cdots z_{n,\sigma(n)}$$

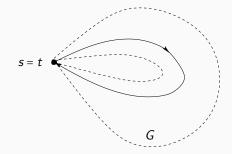
• Similar to the permanent:
$$det(\bar{z}) = \sum sign(\mathcal{C}) weight(\mathcal{C})$$

 ${\mathcal C}$ a cycle cover



Universality for ABPs

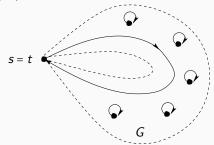
- $\det(\bar{z}) = \sum_{\sigma \in S_n} \epsilon(\sigma) z_{1,\sigma(1)} \cdots z_{n,\sigma(n)}$
- Similar to the permanent: det(\bar{z}) = $\sum_{\mathcal{C} \text{ a cycle cover}} \operatorname{sign}(\mathcal{C}) \operatorname{weight}(\mathcal{C})$



Universality for ABPs

• det
$$(\bar{z}) = \sum_{\sigma \in S_n} \epsilon(\sigma) z_{1,\sigma(1)} \cdots z_{n,\sigma(n)}$$

- Similar to the permanent: det(\overline{z}) = $\sum_{C \text{ a cycle cover}} sign(C) weight(C)$
- Sign of a permutation decomposed in *k* cycles: $(-1)^{n+k}$
- Sign of a permutation with one main cycle of length p: (-1)^{n + 1+(n-p)} = (-1)^{p-1}
- Multiplicative sign coming from the -1 loops: (-1)^{n-p}
- Overall sign: $(-1)^{n-1}$



- Gaussian elimination
- Dynamic computation: too much information to keep track of, exponential size
- A cycle cannot loop before coming back to the first vertex
- Two cycles cannot have a common vertex

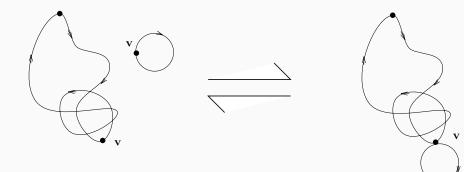
- A closed walk (CLOW) of length *i* is a sequence of vertices c₁, c₂,..., c_i, c₁ (generalization of a cycle)
- Its weight is the product of the weight of the edges
- A CLOW-sequence is a sequence C_1, \ldots, C_k of closed walks (generalization of a cycle cover)
- Its length is the sum of the lengths of the C_i
- Its weight is the product of the weights of the C_i
- Its sign is (−1)^{n+k}
- We know that: $det(\overline{z}) = \sum_{C \text{ a cycle cover}} sign(C) weight(C)$
- We will show that: $det(\bar{z}) = \sum_{\substack{\mathcal{P} \text{ a CLOW sequence} \\ \text{ of length } n}} sign(\mathcal{P}) weight(\mathcal{P})$

Building an involution φ

- φ is the identity on cycle covers
- weight(φ(P)) = weight(P) and sign(φ(P)) = -sign(P), for a CLOW sequence P which is not a cycle cover

Building an involution φ

- φ is the identity on cycle covers
- weight(φ(P)) = weight(P) and sign(φ(P)) = −sign(P), for a CLOW sequence P which is not a cycle cover



Source: Mahajan & Vinay

Computing the determinant

- Compute the sum of the weights of the CLOW sequences of the complete directed graph
- [*I*, *c*, *c*₀, *s*]: sum of the weights of all partial CLOW sequences of length *I*, with current vertex *c*, with current CLOW starting point *c*₀ and with parity of the number of current completed CLOWs *s*.
- Build a graph with $2n^3$ vertices $(1 \le l, c, c_0 \le n, s \in \{-1,1\})$: one for each tuple $[l, c, c_0, s]$.
- Vertex $[l, c, c_0, s]$ sends an edge to vertex $[l+1, c', c_0, s]$, with weight $z_{cc'}$
- Vertex $[l, c, c_0, s]$ sends an edge to vertex $[l+1, c'_0, c'_0, -s]$ with weight z_{cc_0}
- Add a starting vertex, an end vertex, and relevant edges including for the sign

 VBP = VNP iff the permanent polynomial can be written as the determinant of a matrix of polynomially bounded size

Outline

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

Non-commutative computations

- Cancellations are useful
- How much?
- Is it useful to produce non-multilinear monomials when computing a multilinear polynomial?
- Is it useful to compute higher-degree monomials and then cancel them out?
- Is is useful to produce non-homogeneous polynomials when computing an homogeneous polynomial?
- Answer may depend on the computation model (formula, ABP, circuit)

Outline

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

Non-commutative computations

• A circuit *C* is said to be *homogeneous* if every gate in the circuit computes a homogeneous polynomial

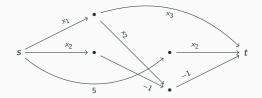
Lemma

Let f be an n-variate degree d polynomial computed by a circuit C of size s. Then there is a homogeneous arithmetic circuit C', of size at most $O(sd^2)$, that computes the homogeneous components of f

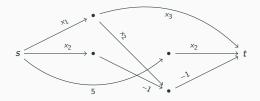
- For every gate $g \in C$, define (d+1) gates $g^{(0)}, \ldots, g^{(d)}$
- We will build a new circuit C' such that g⁽ⁱ⁾ computes the degree i homogeneous component of the polynomial computed at g.
- If a gate g has children h₁ and h₂ in C, then C' has the following connections depending on the type of g:

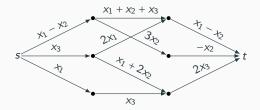
$$g = h_1 + h_2 \implies g^{(i)} = h_1^{(i)} + h_2^{(i)} \text{ for all } i$$
$$g = h_1 \times h_2 \implies g^{(i)} = \sum_{j=0}^i h_1^{(j)} h_2^{(i-j)} \text{ for all } i$$

Homogenization of ABPs



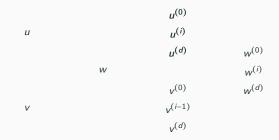
Homogenization of ABPs





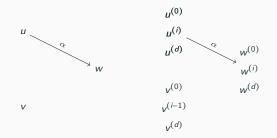
Homogenization of ABPs

- Similar idea applied to an ABP A
- Create a new ABP A' with vertices u⁽⁰⁾,..., u^(d): u⁽ⁱ⁾ will compute the homogeneous component of degree i of the polynomial computed at u in A
- Connect the new vertices by induction, starting from the source s



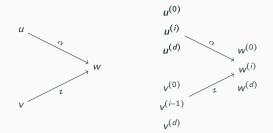
Homogenization of ABPs

- Similar idea applied to an ABP A
- Create a new ABP A' with vertices u⁽⁰⁾,..., u^(d): u⁽ⁱ⁾ will compute the homogeneous component of degree i of the polynomial computed at u in A
- Connect the new vertices by induction, starting from the source s
- If a vertex w receives an edge labeled with a constant α from the vertex u then w⁽ⁱ⁾ must receive an edge labeled with α from the vertex u⁽ⁱ⁾



Homogenization of ABPs

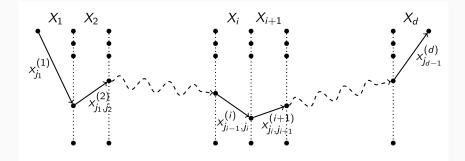
- Similar idea applied to an ABP A
- Create a new ABP A' with vertices u⁽⁰⁾,..., u^(d): u⁽ⁱ⁾ will compute the homogeneous component of degree i of the polynomial computed at u in A
- Connect the new vertices by induction, starting from the source s
- If a vertex w receives an edge labeled with a constant α from the vertex u then w⁽ⁱ⁾ must receive an edge labeled with α from the vertex u⁽ⁱ⁾
- If a vertex w receives an edge labeled with a variable z from the vertex v then w⁽ⁱ⁾ must receive an edge labeled with z from the vertex u⁽ⁱ⁻¹⁾



- Arrange the vertices by "level": all vertices of the form w^{i} are on level i
- Edges can be inside a level or from one level to the next
- All the paths must visit at least one vertex by level
- The sum of the weights of the paths from a vertex in level *i* to a vertex in level *i* + 1 is a linear form
- Delete all edges and add edges between levels, with linear forms

ABPs and iterated matrix multiplication

$$\mathrm{IMM}_{n,d} = \sum_{1 \le j_1, \dots, j_{d-1} \le n} x_{j_1}^{(1)} x_{j_1, j_2}^{(2)} x_{j_2, j_3}^{(3)} \cdots x_{j_{d-2}, j_{d-1}}^{(d-1)} x_{j_{d-1}}^{(d)}$$



• If a circuit C computes a polynomial $P(x_1, \ldots, x_n, y)$ with $\deg_y P = d$

•
$$P(x_1,...,x_n,y) = P_0(x_1,...,x_n) + P_1(x_1,...,x_n)y + \dots + P_d(x_1,...,x_n)y^d$$

- Fix distinct scalars $\alpha_0, \ldots, \alpha_d \in \mathbb{F}$
- Each of the P_i(x₁,...,x_n) can be expressed as a linear combination of {P(x₁,...,x_n, α₀),...,P(x₁,...,x_n, α_d)}
- If P is computable by a size s circuit from some class C, then each P_i is computable by a size O(sd) circuit from the class ΣC
- If P is computable by a size s formula, then each P_i is computable by a size O(sd) formula

$$P(x_1,...,x_n,y) = P_0(x_1,...,x_n) + P_1(x_1,...,x_n)y + \cdots + P_d(x_1,...,x_n)y^d$$

$$\begin{bmatrix} 1 & \alpha_0 & \cdots & \alpha_0^d \\ 1 & \alpha_1 & \cdots & \alpha_1^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_d & \cdots & \alpha_d^d \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ \vdots \\ P_d \end{bmatrix} = \begin{bmatrix} P(\alpha_0) \\ P(\alpha_1) \\ \vdots \\ P(\alpha_d) \end{bmatrix}$$
$$\begin{bmatrix} P_0 \\ \beta_1 \\ \vdots \\ \beta_{d0} \\ \beta_{d1} \\ \vdots \\ \beta_{d1} \\ \vdots \\ \beta_{d1} \\ \beta_{d1} \\ \vdots \\ \beta_{d1} \\ \beta_{d1} \\ \vdots \\ \beta_{d$$

 $P_i(x_1,\ldots,x_n) = \beta_0 P(x_1,\ldots,x_n,\alpha_0) + \cdots + \beta_d P(x_1,\ldots,x_n,\alpha_d).$

Homogenization of formulas

•
$$P(x_1,\ldots,x_n) = Q_0 + \cdots + Q_d$$

- Consider the polynomial $P'(x_1, \ldots, x_n, y) \coloneqq P(yx_1, \ldots, yx_n)$
- Then: $P'(x_1, ..., x_n) = Q_0 + yQ_1 + \dots + y^dQ_d$
- Computing higher degrees gives no advantage for formulas
- But it is unknown if homogeneous formulas are as powerful as general ones
- Exercise: Give a polynomial-size formula for:

$$\sum_{1 \le i_1 < i_2 < \dots < i_d \le n} x_{i_1} \cdots x_{i_d} \quad \text{and} \quad \sum_{m \in \{ \text{deg. } d \text{ monomials} \}} m$$

Lemma (Raz 2010)

Let Φ be a formula of size s computing an n-variate homogeneous polynomial f of degree d. Then there is an homogeneous formula Φ' computing f of size at most poly $\left(s, \binom{d+\log s}{d}\right)$.

In particular, if $d = O(\log n)$ and n = poly(n) then we have $size(\Phi') = poly(n)$ as well.

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

Lemma (Brent 1974)

Let f be an n-variate degree d polynomial computed by an arithmetic formula Φ of size s. Then f can also be computed by a formula Φ' of size s' = poly(s, n, d) and depth $O(\log s)$.

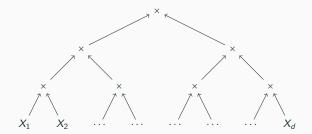
Theorem (Valiant, Skyum, Berkowitz, Rackoff 1983)

Let f be an n-variate degree d polynomial computed by an arithmetic circuit Φ of size s. Then there is an arithmetic circuit Φ' computing f of size s' = poly(s, n, d) and depth $O(\log d)$.

- In the resulting circuit the additions have unbounded fan-in
- It is enough to prove lower bounds for such log-depth circuits
- Easy to prove for ABPs

Depth-reduction for ABPs

- Compute IMM with a log *d*-depth formula where gates compute matrix products
- Implementing each matrix-product gate with arithmetic operations can be done in constant depth if we use unbounded fan-in addition gates



Depth-reduction to constant depth

- If multiplication gates have fan-in 2, constant-depth circuits can only compute constant-degree polynomials
- We consider depth-4 circuits of a special form: ΣΠΣΠ



Theorem

Let f be an n-variate degree d polynomial computed by a size s arithmetic circuit. Then for any $0 < t \le d$, f can be equivalently computed by a homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit of top fan-in $s^{O(d/t)}$ and size $s^{O(t+d/t)}$.

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

 $\operatorname{VBP}\text{-}\mathsf{completeness}$ of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

A lower bound for general circuits

Theorem (Baur & Strassen 1983)

Any circuit computing simultaneously x_1^d, \ldots, x_n^d has size $\Omega(n \log d)$

- Each gate $a \mapsto$ new variable z_a
- Collect the equations characterizing the local computation of each gate, e.g., $z_a (z_b \cdot z_c) = 0$
- If z is an output gate, add the equation z 1 = 0
- Solutions of this system:
 - Each x_i is mapped to a *d*-th root of unity
 - Other variables are set by the equations.
- Bézout: the number of common roots is at most the product of the degrees of the equations
- $d^n \le 2^s$

Lemma (Baur & Strassen 1983)

If f can be computed by a circuit of size s, then all first-order derivatives of f can be simultaneously computed by a circuit of size O(s)

- Simple proof by induction
- Same principle as backpropagation for neural networks

Theorem (Baur & Strassen 1983)

Any circuit computing $x_1^{d+1} + \dots + x_n^{d+1}$ has size $\Omega(n \log d)$

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

- Cancellations yield efficient computations
- Efficient computations produce "wrong" monomials which then cancel out
- Monotone computations: no cancellations, exponential lower bounds for circuit size
- Multilinear computations: only produce multilinear monomials, superpolynomial lower bounds for formula size
- Non-commutative lower bounds: cancelled monomials must be in the same order, exponential lower bounds for ABPs

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

For a given model:

- 1. Decomposition: show that any polynomial computed by such a model is a small sum of simple *building blocks* polynomials: $f = \sum_{i=1}^{s} f_i$
- 2. Measure: define a sub-additive measure $\mu: \mathcal{K}[X] \to \mathbb{R}^+$
- 3. Simple blocks: show that if g is a building block, $\mu(g)$ is small
- 4. Explicit hard polynomial: find f such that μ(f) is big
 big ≤ μ(f) ≤ μ(∑_{i=1}^s f_i) ≤ ∑_{i=1}^s μ(f_i) ≤ s× small
- 5. ???
- 6. Profit

For $\Sigma \wedge \Sigma$ circuits:

- 1. Decomposition: $f = \sum_{i=1}^{s} L_i^{d_i}$, L_i a linear combination of the variables
- 2. Measure: $\mu_k(f)$: dimension of the space spanned by all partial derivatives of f of order k
- 3. Simple blocks: $\mu_k(L^d) = 1$, because any partial derivative is proportionnal to L^{d-k}
- 4. Explicit hard polynomial: per

$$\mu_k(\text{per}) = {\binom{n}{k}}^2 2^n \le \mu_{n/2}(f) \le \mu_{n/2}(\sum_{i=1}^s \mathcal{L}_i^{d_i}) \le \sum_{i=1}^s \mu_{n/2}(\mathcal{L}_i^{d_i}) \le s$$

Introduction and basic definitions

Completeness of the permanent

 $VNP_e = VNP$

Graphical interpretation of the permanent and universality for formulas

Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization

Depth-reduction

Lower bounds

A general lower bound

Restricted computations

Lower bound strategy

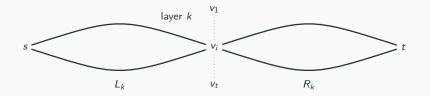
- 𝔽⟨𝑥₁,...,𝑥_n⟩: ring of non-commutative polynomials
- Non-commutative: $x_i x_j \neq x_j x_i$. Need to order the children of the ×-gates.
- Non-commutative polynomial of degree ≤ *d*:

$$f = \sum_{\substack{m \in \{x_1, \dots, x_n\}^* \\ |m| \le d}} \alpha_m . m \qquad (\alpha_m \in \mathbb{F})$$

For homogeneous non-commutative ABPs:

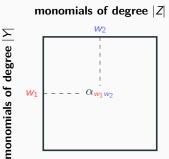
- Decomposition: f = ∑^w_{i=1} l_i · r_i, cutting at layer k and partitioning depending on the intermediary vertex from layer k
- 2. Measure: $\mu_k(f)$: rank of the coefficient matrix with monomials of degree k for the lines and degree n k for the columns
- 3. Simple blocks: $\mu_k(l \cdot r) = 1$, because the coefficient matrix is then the product of two vectors
- 4. Explicit hard polynomial: Pal (or per or det)

$$\begin{split} \mu_k(\mathsf{Pal}) &= n^k \\ n^k \leq \mu_k(\mathsf{Pal}) \leq \mu_k(\sum_{i=1}^w l_i \cdot r_i) \leq \sum_{i=1}^w \mu_k(l_i \cdot d_i) \leq s \end{split}$$

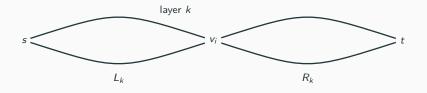


Measure: coefficient matrices

• $f = \sum_{w} \alpha_{w} \cdot w$, homogeneous, degree d, n variables

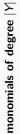


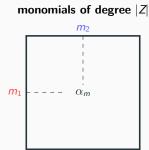
- Define matrix *M_k(f*)
- Complexity measure : rank($M_k(f)$).



• $\Pi = (\{1, 2, \dots, k\}, \{k+1, k+2, \dots, d\})$

d - k





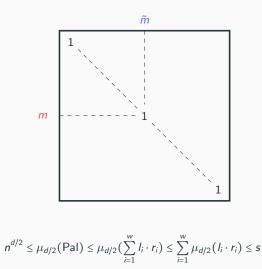
• For $m \in \{x_1, \ldots, x_n\}^*$, write \tilde{m} for the word in reverse order

$$\mathsf{Pal}_d X = \sum_{m \in \{x_1, \dots, x_n\}^{d/2}} m \cdot \tilde{m}$$

•
$$\operatorname{Pal}_{d+1} X = \sum_{i=1}^{n} x_i \cdot \operatorname{Pal}_d X \cdot x_i$$

What is the matrix if we cut in the middle?

Explicit hard polynomial: the palindrome



• $\Pi = (\{1, 2, \dots, k\}, \{k+1, k+2, \dots, d\})$

Theorem (Nisan, 1991)

For any homogeneous polynomial f of degree d, the size of a smallest homogeneous algebraic branching program for f is equal to

 $\sum_{k=0}^{d} \operatorname{rank}(M_k(f))$

Corollary

Any homogeneous ABP computing the permanent has size $\geq 2^n$

- General results from the 70s imply Nisan's results and can be used to recover more recent extensions
- Provide a characterization of smallest circuit size for *non-associative* computations
- Does not seem to provide tools for non-commutative circuits

- Many different open questions, in general and in restricted models
- New tools (measures)
- Completely new tools

- Completeness and Reduction in Algebraic Complexity Theory, Peter Bürgisser. Algorithms and Computation in Mathematics. Springer, 2000.
- Arithmetic Circuits: a survey of recent results and open questions, Amir Shpilka & Amir Yehudayoff. Foundations and Trends in Theoretical Computer Science 2010. https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf
- A survey of lower bounds in arithmetic circuit complexity. https://github.com/dasarpmar/lowerbounds-survey, maintained by Ramprasad Saptharishi
 Quite a few statements and examples borrowed!
- Please ask for detailed explanations...