Algebraic complexity

EPIT 2023: Le Kaléidoscope de la Complexité

Guillaume Malod
June 12-16 2023 Oléron Island (France)

Outline

Introduction and basic definitions
Completeness of the permanent

$$
\mathrm{VNP}_{\mathrm{e}}=\mathrm{VNP}
$$

Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P P_{e}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Representing multivariate polynomials

- Dense representation
- Sparse representation
- Arithmetic formulas: $\left(x_{1}+y_{1}\right) \times \cdots \times\left(x_{n}+y_{n}\right)$
- Arithmetic circuits

Arithmetic circuits

- Size of a circuit: number of gates or edges...
- Arithmetic circuit of size 12 computing $(x y+y)(x y+y)+(x y)(y+z)((y+z)+\pi)$
- Depth: length of a longest path from root to leaf

Arithmetic formulas

- Weak model: each
subcomputation can be used only once.
- Underlying graph $=$ tree.

Algebraic Branching Program (ABP)

- DAG from a source s to a sink t with arcs labelled by constants or variables.

- Weight of a path $=$ product of the labels.
- Polynomial computed by the $\mathrm{ABP}=$ sum of the weights of all paths from s to t.

Algebraic Branching Program (ABP)

- DAG from a source s to a sink t with arcs labelled by constants or variables.

- Weight of a path $=$ product of the labels.
- Polynomial computed by the $\mathrm{ABP}=$ sum of the weights of all paths from s to t.

Important examples

$$
\begin{gathered}
\bar{z}=\left(z_{i, j}\right)_{1 \leq i, j \leq n} \\
\operatorname{det}(\bar{z})=\sum_{\sigma \in S_{n}} \epsilon(\sigma) \prod_{i=1}^{n} z_{i, \sigma(i)} \\
\operatorname{per}(\bar{z})=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} z_{i, \sigma(i)} \\
\operatorname{hc}(\bar{z})=\sum_{\substack{\sigma \in S_{n} \\
\sigma \text { is a cycle }}} \prod_{i=1}^{n} z_{i, \sigma(i)}
\end{gathered}
$$

Small classes

- Only consider sequences of polynomials with polynomially bounded degree
- A sequence of polynomials $\left(f_{n}\right) \rightarrow$ existence of a "small" sequence $\left(C_{n}\right)$ such that C_{n} computes f_{n}
- VP: sequences computable by a sequence of circuits of polynomially bounded size
- VP_{e} : sequences computable by a sequence of formulas of polynomially bounded size
- VBP: sequences computable by a sequence of ABPs of polynomially bounded size
- $\mathrm{VP}_{\mathrm{e}} \subseteq \mathrm{VBP} \subseteq \mathrm{VP}$

Big classes

- VNP: $\left(f_{n}\right) \in$ VNP if $\exists\left(g_{n}\right) \in \mathrm{VP}$:

$$
f_{n}(\bar{z})=\sum_{\epsilon \in\{0,1\}}{ }^{q(n)} g_{n}(\bar{z}, \epsilon)
$$

- For the permanent:

$$
\operatorname{per}(\bar{z})=\sum_{\bar{\epsilon} \in\{0,1\}^{n^{2}}} \operatorname{test}(\bar{\epsilon}) \cdot \prod_{i=1}^{n}\left(\sum_{j=1}^{n} \epsilon_{i, j} z_{i, j}\right)
$$

- VNP: $\left(f_{n}\right) \in$ VNP if $\exists\left(g_{n}\right) \in$ VP:

$$
f_{n}(\bar{z})=\sum_{\epsilon \in\{0,1\} q(n)} g_{n}(\bar{z}, \epsilon)
$$

- For the permanent:

$$
\operatorname{per}(\bar{z})=\sum_{\bar{\epsilon} \in\{0,1\}^{n^{2}}}\left(\prod_{\substack{1 \leq i, j, k, k n \\ i=k i f f j \neq 1}}\left(1-\epsilon_{i, j} \epsilon_{k, l}\right)\right) \cdot\left(\prod_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{i, j}\right) \cdot \prod_{i=1}^{n}\left(\sum_{j=1}^{n} \epsilon_{i, j} z_{i, j}\right)
$$

Big classes

- VNP: $\left(f_{n}\right) \in$ VNP if $\exists\left(g_{n}\right) \in$ VP:

$$
f_{n}(\bar{z})=\sum_{\epsilon \in\{0,1\} q(n)} g_{n}(\bar{z}, \epsilon)
$$

- For the permanent:

$$
\operatorname{per}(\bar{z})=\sum_{\bar{\epsilon} \in\{0,1\} n^{2}}\left(\prod_{\substack{1 \leq i, j, k, k, \mid \leq n \\ i=k \text { iff } j \neq l}}\left(1-\epsilon_{i, j} \epsilon_{k, l}\right)\right) \cdot\left(\prod_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{i, j}\right) \cdot \prod_{i=1}^{n}\left(\sum_{j=1}^{n} \epsilon_{i, j} z_{i, j}\right)
$$

- Intuitively, all polynomials where the coefficient function is in GapP/poly
- Exercise: show that hc \in VNP
- Bonus exercise: use dynamic programming to give an $O\left(n 2^{n}\right)$ circuit for per; compare with Wikipedia (Ryser)

Classes

VP versus VNP

- Main open question: VP =? VNP
- Somewhat related to $\mathrm{P}=$? NP

Theorem (P. Bürgisser)

Under (GRH), VP = VNP over \mathbb{C} implies $\mathrm{P} /$ poly $=\mathrm{NP} /$ poly.

- per is VNP-complete over fields of characteristic $\neq 2$
- hc is VNP-complete
- det is VBP-complete
- VBP vs VNP becomes det vs per

Reductions

- A polynomial f is a projection of a polynomial g if $f(\bar{x})=g\left(a_{1}, \ldots, a_{m}\right)$, where the a_{i} are elements of the field or variables among x_{1}, \ldots, x_{n}
- A sequence $\left(f_{n}\right)$ is a p-projection of a sequence $\left(g_{n}\right)$ if there exists a polynomially bounded function $t(n)$ such that f_{n} is a projection of $g_{t(n)}$ for all n
- A sequence of polynomials $\left(f_{n}\right) \in \mathcal{C}$ is \mathcal{C}-complete if any sequence of polynomials $\left(g_{n}\right) \in \mathcal{C}$ is a p-projection of $\left(f_{n}\right)$

Valiant's theorem

Theorem

The sequence (per $_{n}$) is VNP-complete over any field of characteristic different from 2.

Corollary

Over any field of characteristic different from 2, VP = VNP iff per \in VP.

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{e}=V N P$
Graphical interpretation of the permanent and universality for formulas
Fliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Completeness proof strategy

1. $\mathrm{VNP}_{\mathrm{e}}=\mathrm{VNP}$
2. The permanent is universal for formulas
3. The permanent can "eliminate" boolean sums

Outline

Introduction and basic definitions
Completeness of the permanent
$\mathrm{VNP}_{\mathrm{e}}=\mathrm{VNP}$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Classes defined via formulas

- $\left(f_{n}\right) \in \mathrm{VP}_{\mathrm{e}}$ if there exists a sequence of formulas $\left(F_{n}\right)$ of polynomially bounded size such that F_{n} computes f_{n}.
- $\left(f_{n}\right) \in \mathrm{VNP}_{\mathrm{e}}$ if there exists a polynomial p and a sequence $g_{n} \in \mathrm{VP}_{\mathrm{e}}$ such that:

$$
f_{n}(\bar{x})=\sum_{\bar{\epsilon} \in\{0,1\}^{p(\mid \bar{x})}} g_{n}(\bar{x}, \bar{\epsilon}) .
$$

- $\mathrm{VP}_{\mathrm{e}} \subseteq \mathrm{VP}$ and $\mathrm{VNP}_{\mathrm{e}} \subseteq \mathrm{VNP}$
- Whether $\mathrm{VP}_{\mathrm{e}}=\mathrm{VP}$ or not is still open
- Valiant showed that $\mathrm{VNP}_{\mathrm{e}}=\mathrm{VNP}$
- Is it enough to show that $\mathrm{VP} \subseteq \mathrm{VNP}_{\mathrm{e}}$
- Reduction of CircuitSAT to SAT

Parse trees

Figure 1: $\operatorname{val}(T)=z a b$

- Each parse tree computes a monomial.
- The polynomial $f(z)$ computed by the circuit is $\sum_{T} \operatorname{val}(T)$
- $f(z)=\sum_{\bar{\epsilon} \in\{0,1\}^{s}} \operatorname{test}(\bar{\epsilon}) \operatorname{val}^{\prime}(\epsilon, z)$

Outline

Introduction and basic definitions

Completeness of the permanent

Graphical interpretation of the permanent and universality for formulas Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

The permanent

- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If G is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of G

The permanent

- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If G is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of G

The permanent

- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If G is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of G

The permanent

- If G is a bipartite graph, the permanent of its adjacency matrix counts the number of perfect matchings of G
- If G is a directed graph with a weight function on the edges, the permanent of its adjacency matrix is the sum of the weight of the cycle covers of G

Lemma

If f is a polynomial computed by a formula of size e, then there exists an ABP G of size e +1 computing f.

$\mathrm{VP}_{\mathrm{e}} \subseteq \mathrm{VBP}$

Lemma

If f is a polynomial computed by a formula of size e, then there exists an $A B P$ G of size $e+1$ computing f.

$\mathrm{VP}_{\mathrm{e}} \subseteq \mathrm{VBP}$

Lemma

If f is a polynomial computed by a formula of size e, then there exists an $A B P$ G of size $e+1$ computing f.
$e=e_{1}+e_{2}:$

$\mathrm{VP}_{\mathrm{e}} \subseteq \mathrm{VBP}$

Lemma

If f is a polynomial computed by a formula of size e, then there exists an ABP G of size e +1 computing f.

$$
e=e_{1} \times e_{2}
$$

The permanent is universal for ABPs

Lemma

If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that $f=\operatorname{per}(M)$.

The permanent is universal for ABPs

Lemma

If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that $f=\operatorname{per}(M)$.

The permanent is universal for ABPs

Lemma

If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that $f=\operatorname{per}(M)$.

The permanent is universal for ABPs

Lemma

If f is a polynomial computed by a formula of size e, then there exists an $e \times e$ matrix M such that $f=\operatorname{per}(M)$.

Outline

Introduction and basic definitions
Completeness of the permanent
$\mathrm{VNP}_{\mathrm{e}}=\mathrm{VNP}$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Eliminating sums

- Suppose $\left(f_{n}\right) \in$ VNP, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}
- $g_{n}\left(\bar{x}, y_{0}\right)$ is a permanent, so it is the weight of the cycle covers of a graph G

$$
2 \xrightarrow{G}{ }_{1}^{y_{0}} \xrightarrow{y_{0}}
$$

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}
- $g_{n}\left(\bar{x}, y_{0}\right)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_{n}(\bar{x}, 0)+g_{n}(\bar{x}, 1)$ as a permanent

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}
- $g_{n}\left(\bar{x}, y_{0}\right)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_{n}(\bar{x}, 0)+g_{n}(\bar{x}, 1)$ as a permanent
- $g_{n}(\bar{x}, 0)$ is the sum of the weights of the cycle covers which do not use any of the edges

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}
- $g_{n}\left(\bar{x}, y_{0}\right)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_{n}(\bar{x}, 0)+g_{n}(\bar{x}, 1)$ as a permanent
- $g_{n}(\bar{x}, 0)$ is the sum of the weights of the cycle covers which do not use any of the edges
- For each subset $S \subseteq\{1, \ldots, k\}$, let W_{S} be the weight of the cycle covers using exactly the edges numbered in S
Then: $g_{n}(\bar{x}, 1)=\sum_{S \subseteq\{1, \cdots, k\}} W_{S}$

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}
- $g_{n}\left(\bar{x}, y_{0}\right)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_{n}(\bar{x}, 0)+g_{n}(\bar{x}, 1)$ as a permanent
- $g_{n}(\bar{x}, 0)$ is the sum of the weights of the cycle covers which do not use any of the edges
- For each subset $S \subseteq\{1, \ldots, k\}$, let W_{S} be the weight of the cycle covers using exactly the edges numbered in S
Then: $g_{n}(\bar{x}, 1)=\sum_{S \subseteq\{1, \cdots, k\}} W_{S}$
- With this notation, $g_{n}(\bar{x}, 0)$ is W_{\varnothing}

Eliminating sums

- Suppose $\left(f_{n}\right) \in \mathrm{VNP}$, then $f_{n}(\bar{x})=\sum_{\bar{\epsilon}} g_{n}(\bar{x}, \bar{\epsilon})$, with $\left(g_{n}(\bar{x}, \bar{y})\right) \in \mathrm{VP}_{\mathrm{e}}$
- Suppose there is only one variable y_{0}
- $g_{n}\left(\bar{x}, y_{0}\right)$ is a permanent, so it is the weight of the cycle covers of a graph G
- We wish to compute $g_{n}(\bar{x}, 0)+g_{n}(\bar{x}, 1)$ as a permanent
- $g_{n}(\bar{x}, 0)$ is the sum of the weights of the cycle covers which do not use any of the edges
- For each subset $S \subseteq\{1, \ldots, k\}$, let W_{S} be the weight of the cycle covers using exactly the edges numbered in S
Then: $g_{n}(\bar{x}, 1)=\sum_{S \subseteq\{1, \cdots, k\}} W_{S}$
- With this notation, $g_{n}(\bar{x}, 0)$ is W_{\varnothing}
- And $g_{n}(\bar{x}, 0)+g_{n}(\bar{x}, 1)=2 W_{\varnothing}+\sum_{\substack{S \subseteq\{1, \ldots, k\} \\ S \neq \varnothing}} W_{S}$

The Rosette gadget

- A directed graph with $2 k$ vertices, $3 k$ edges and $2 k$ loops

The Rosette gadget

- A directed graph with $2 k$ vertices, $3 k$ edges and $2 k$ loops
- There are exactly two cycle covers which do not go through any of the edges $1,2, \ldots, k$

The Rosette gadget

- A directed graph with $2 k$ vertices, $3 k$ edges and $2 k$ loops
- There are exactly two cycle covers which do not go through any of the edges $1,2, \ldots, k$

The Rosette gadget

- A directed graph with $2 k$ vertices, $3 k$ edges and $2 k$ loops
- There are exactly two cycle covers which do not go through any of the edges $1,2, \ldots, k$
- For each non-empty subset of $\{1, \ldots, k\}$ there is exactly one cycle cover which goes through exactly the specified edges

The IFF gadget

Lemma

The permanent of G^{\prime} is the sum of the weights of all cycle covers of G which contain both edges (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ or neither.

Bringing everything together

G
\qquad

$$
k \longrightarrow
$$

$$
1 \longrightarrow
$$

Bringing everything together

The IFF gadget

Source: Ramprasad Saptharishi

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{G}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Universality for ABPs

- $\operatorname{det}(\bar{z})=\sum_{\sigma \in S_{n}} \epsilon(\sigma) z_{1, \sigma(1)} \cdots z_{n, \sigma(n)}$
- Similar to the permanent: $\operatorname{det}(\bar{z})=\sum_{\mathcal{C} \text { a cycle cover }} \operatorname{sign}(\mathcal{C})$ weight (\mathcal{C})

Universality for ABPs

- $\operatorname{det}(\bar{z})=\sum_{\sigma \in S_{n}} \epsilon(\sigma) z_{1, \sigma(1)} \cdots z_{n, \sigma(n)}$
- Similar to the permanent: $\operatorname{det}(\bar{z})=\sum_{\mathcal{C} \text { a cycle cover }} \operatorname{sign}(\mathcal{C})$ weight (\mathcal{C})

Universality for ABPs

- $\operatorname{det}(\bar{z})=\sum_{\sigma \in S_{n}} \epsilon(\sigma) z_{1, \sigma(1)} \cdots z_{n, \sigma(n)}$
- Similar to the permanent: $\operatorname{det}(\bar{z})=\sum_{\mathcal{C} \text { a cycle cover }} \operatorname{sign}(\mathcal{C})$ weight (\mathcal{C})
- Sign of a permutation decomposed in k cycles: $(-1)^{n+k}$
- Sign of a permutation with one main cycle of length p : $(-1)^{n+1+(n-p)}=(-1)^{p-1}$
- Multiplicative sign coming from the -1 loops: $(-1)^{n-p}$
- Overall sign: $(-1)^{n-1}$

Computing the determinant

- Gaussian elimination
- Dynamic computation: too much information to keep track of, exponential size
- A cycle cannot loop before coming back to the first vertex
- Two cycles cannot have a common vertex

CLOW sequences

- A closed walk (CLOW) of length i is a sequence of vertices $c_{1}, c_{2}, \ldots, c_{i}, c_{1}$ (generalization of a cycle)
- Its weight is the product of the weight of the edges
- A CLOW-sequence is a sequence C_{1}, \ldots, C_{k} of closed walks (generalization of a cycle cover)
- Its length is the sum of the lengths of the C_{i}
- Its weight is the product of the weights of the C_{i}
- Its sign is $(-1)^{n+k}$
- We know that: $\operatorname{det}(\bar{z})=\sum_{\mathcal{C} \text { a cycle cover }} \operatorname{sign}(\mathcal{C})$ weight (\mathcal{C})
- We will show that: $\operatorname{det}(\bar{z})=\sum_{\substack{\mathcal{P} \text { a cLow sequence } \\ \text { of length } n}} \operatorname{sign}(\mathcal{P})$ weight (\mathcal{P})

Building an involution φ

- φ is the identity on cycle covers
- weight $(\varphi(P))=$ weight (P) and $\operatorname{sign}(\varphi(P))=-\operatorname{sign}(P)$, for a CLOW sequence \mathcal{P} which is not a cycle cover

Building an involution φ

- φ is the identity on cycle covers
- weight $(\varphi(P))=$ weight (P) and $\operatorname{sign}(\varphi(P))=-\operatorname{sign}(P)$, for a CLOW sequence \mathcal{P} which is not a cycle cover

Computing the determinant

- Compute the sum of the weights of the CLOW sequences of the complete directed graph
- $\left[I, c, c_{0}, s\right]$: sum of the weights of all partial CLOW sequences of length I, with current vertex c, with current CLOW starting point c_{0} and with parity of the number of current completed CLOWs s.
- Build a graph with $2 n^{3}$ vertices $\left(1 \leq I, c, c_{0} \leq n, s \in\{-1.1\}\right)$: one for each tuple $\left[I, c, c_{0}, s\right]$.
- Vertex $\left[I, c, c_{0}, s\right]$ sends an edge to vertex $\left[I+1, c^{\prime}, c_{0}, s\right]$, with weight $z_{c c^{\prime}}$
- Vertex $\left[I, c, c_{0}, s\right]$ sends an edge to vertex $\left[I+1, c_{0}^{\prime}, c_{0}^{\prime},-s\right]$ with weight $z_{c c_{0}}$
- Add a starting vertex, an end vertex, and relevant edges including for the sign

Slogan

- VBP = VNP iff the permanent polynomial can be written as the determinant of a matrix of polynomially bounded size

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{5}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Cancellations

- Cancellations are useful
- How much?
- Is it useful to produce non-multilinear monomials when computing a multilinear polynomial?
- Is it useful to compute higher-degree monomials and then cancel them out?
- Is is useful to produce non-homogeneous polynomials when computing an homogeneous polynomial?
- Answer may depend on the computation model (formula, ABP, circuit)

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{c}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums

VBP-completeness of the determinant

Structural properties

Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Homogenization of circuits

- A circuit C is said to be homogeneous if every gate in the circuit computes a homogeneous polynomial

Lemma

Let f be an n-variate degree d polynomial computed by a circuit C of size s. Then there is a homogeneous arithmetic circuit C, of size at most $O\left(s d^{2}\right)$, that computes the homogeneous components of f

- For every gate $g \in C$, define $(d+1)$ gates $g^{(0)}, \ldots, g^{(d)}$
- We will build a new circuit C^{\prime} such that $g^{(i)}$ computes the degree i homogeneous component of the polynomial computed at g.
- If a gate g has children h_{1} and h_{2} in C, then C^{\prime} has the following connections depending on the type of g :

$$
\begin{aligned}
& g=h_{1}+h_{2} \Longrightarrow g^{(i)}=h_{1}^{(i)}+h_{2}^{(i)} \text { for all } i \\
& g=h_{1} \times h_{2} \Longrightarrow g^{(i)}=\sum_{j=0}^{i} h_{1}^{(j)} h_{2}^{(i-j)} \text { for all } i
\end{aligned}
$$

Homogenization of ABPs

Homogenization of ABPs

Homogenization of ABPs

- Similar idea applied to an ABP A
- Create a new $\operatorname{ABP} A^{\prime}$ with vertices $u^{(0)}, \ldots, u^{(d)}: u^{(i)}$ will compute the homogeneous component of degree i of the polynomial computed at u in A
- Connect the new vertices by induction, starting from the source s

Homogenization of ABPs

- Similar idea applied to an ABP A
- Create a new $\operatorname{ABP} A^{\prime}$ with vertices $u^{(0)}, \ldots, u^{(d)}: u^{(i)}$ will compute the homogeneous component of degree i of the polynomial computed at u in A
- Connect the new vertices by induction, starting from the source s
- If a vertex w receives an edge labeled with a constant α from the vertex u then $w^{(i)}$ must receive an edge labeled with α from the vertex $u^{(i)}$

Homogenization of ABPs

- Similar idea applied to an ABP A
- Create a new $\operatorname{ABP} A^{\prime}$ with vertices $u^{(0)}, \ldots, u^{(d)}: u^{(i)}$ will compute the homogeneous component of degree i of the polynomial computed at u in A
- Connect the new vertices by induction, starting from the source s
- If a vertex w receives an edge labeled with a constant α from the vertex u then $w^{(i)}$ must receive an edge labeled with α from the vertex $u^{(i)}$
- If a vertex w receives an edge labeled with a variable z from the vertex v then $w^{(i)}$ must receive an edge labeled with z from the vertex $u^{(i-1)}$

Homogenization of ABPs

- Arrange the vertices by "level": all vertices of the form w ' are on level i
- Edges can be inside a level or from one level to the next
- All the paths must visit at least one vertex by level
- The sum of the weights of the paths from a vertex in level i to a vertex in level $i+1$ is a linear form
- Delete all edges and add edges between levels, with linear forms

ABPs and iterated matrix multiplication

$$
\mathrm{IMM}_{n, d}=\sum_{1 \leq j_{1}, \ldots, j_{d-1} \leq n} x_{j_{1}}^{(1)} x_{j_{1}, j_{2}}^{(2)} x_{j_{2}, j_{3}}^{(3)} \cdots x_{j_{d-2}, j_{d-1}}^{(d-1)} x_{j_{d-1}}^{(d)}
$$

Homogenization of formulas: interpolation

- If a circuit C computes a polynomial $P\left(x_{1}, \ldots, x_{n}, y\right)$ with $\operatorname{deg}_{y} P=d$
- $P\left(x_{1}, \ldots, x_{n}, y\right)=P_{0}\left(x_{1}, \ldots, x_{n}\right)+P_{1}\left(x_{1}, \ldots, x_{n}\right) y+\cdots+P_{d}\left(x_{1}, \ldots, x_{n}\right) y^{d}$
- Fix distinct scalars $\alpha_{0}, \ldots, \alpha_{d} \in \mathbb{F}$
- Each of the $P_{i}\left(x_{1}, \ldots, x_{n}\right)$ can be expressed as a linear combination of $\left\{P\left(x_{1}, \ldots, x_{n}, \alpha_{0}\right), \ldots, P\left(x_{1}, \ldots, x_{n}, \alpha_{d}\right)\right\}$
- If P is computable by a size s circuit from some class \mathcal{C}, then each P_{i} is computable by a size $O(s d)$ circuit from the class $\Sigma \mathcal{C}$
- If P is computable by a size s formula, then each P_{i} is computable by a size $O(s d)$ formula

Homogenization of formulas: interpolation

$$
P\left(x_{1}, \ldots, x_{n}, y\right)=P_{0}\left(x_{1}, \ldots, x_{n}\right)+P_{1}\left(x_{1}, \ldots, x_{n}\right) y+\cdots+P_{d}\left(x_{1}, \ldots, x_{n}\right) y^{d}
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & \alpha_{0} & \cdots & \alpha_{0}^{d} \\
1 & \alpha_{1} & \cdots & \alpha_{1}^{d} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{d} & \cdots & \alpha_{d}^{d}
\end{array}\right]\left[\begin{array}{c}
P_{0} \\
P_{1} \\
\vdots \\
P_{d}
\end{array}\right]=\left[\begin{array}{c}
P\left(\alpha_{0}\right) \\
P\left(\alpha_{1}\right) \\
\vdots \\
P\left(\alpha_{d}\right)
\end{array}\right]} \\
{\left[\begin{array}{c}
P_{0} \\
P_{1} \\
\vdots \\
P_{d}
\end{array}\right]=\left[\begin{array}{cccc}
\beta_{00} & \beta_{01} & \cdots & \beta_{0 d} \\
\beta_{10} & \beta_{11} & \cdots & \beta_{1 d} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{d 0} & \beta_{d 1} & \cdots & \beta_{d d}
\end{array}\right]\left[\begin{array}{c}
P\left(\alpha_{0}\right) \\
P\left(\alpha_{1}\right) \\
\vdots \\
P\left(\alpha_{d}\right)
\end{array}\right]} \\
P_{i}\left(x_{1}, \ldots, x_{n}\right)=\beta_{0} P\left(x_{1}, \ldots, x_{n}, \alpha_{0}\right)+\cdots+\beta_{d} P\left(x_{1}, \ldots, x_{n}, \alpha_{d}\right) .
\end{gathered}
$$

Homogenization of formulas

- $P\left(x_{1}, \ldots, x_{n}\right)=Q_{0}+\cdots+Q_{d}$
- Consider the polynomial $P^{\prime}\left(x_{1}, \ldots, x_{n}, y\right):=P\left(y x_{1}, \ldots, y x_{n}\right)$
- Then: $P^{\prime}\left(x_{1}, \ldots, x_{n}\right)=Q_{0}+y Q_{1}+\cdots+y^{d} Q_{d}$
- Computing higher degrees gives no advantage for formulas
- But it is unknown if homogeneous formulas are as powerful as general ones
- Exercise: Give a polynomial-size formula for:

$$
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}} \quad \text { and } \sum_{m \in\{\text { deg. } d \text { monomials }\}} m
$$

Lemma (Raz 2010)

Let Φ be a formula of size s computing an n-variate homogeneous polynomial f of degree d. Then there is an homogeneous formula Φ^{\prime} computing f of size at most poly $\left(s,\binom{d+\log s}{d}\right)$.
In particular, if $d=O(\log n)$ and $n=\operatorname{poly}(n)$ then we have $\operatorname{size}\left(\Phi^{\prime}\right)=\operatorname{poly}(n)$ as well.

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{c}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Depth-reduction for formulas

Lemma (Brent 1974)

Let f be an n-variate degree d polynomial computed by an arithmetic formula ϕ of size s. Then f can also be computed by a formula ϕ^{\prime} of size $s^{\prime}=\operatorname{poly}(s, n, d)$ and depth $O(\log s)$.

Depth-reduction for circuits and ABPs

Theorem (Valiant, Skyum, Berkowitz, Rackoff 1983)

Let f be an n-variate degree d polynomial computed by an arithmetic circuit Φ of size s. Then there is an arithmetic circuit Φ^{\prime} computing f of size $s^{\prime}=\operatorname{poly}(s, n, d)$ and depth $O(\log d)$.

- In the resulting circuit the additions have unbounded fan-in
- It is enough to prove lower bounds for such log-depth circuits
- Easy to prove for ABPs

Depth-reduction for ABPs

- Compute IMM with a $\log d$-depth formula where gates compute matrix products
- Implementing each matrix-product gate with arithmetic operations can be done in constant depth if we use unbounded fan-in addition gates

Depth-reduction to constant depth

- If multiplication gates have fan-in 2, constant-depth circuits can only compute constant-degree polynomials
- We consider depth-4 circuits of a special form: $\Sigma П \Sigma П$

Theorem

Let f be an n-variate degree d polynomial computed by a size s arithmetic circuit. Then for any $0<t \leq d, f$ can be equivalently computed by a homogeneous $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit of top fan-in $s^{O(d / t)}$ and size $s^{O(t+d / t)}$.

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{c}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction

Lower bounds

A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Outline

Introduction and basic definitions
Completeness of the permanent
$\mathrm{VNP}_{\mathrm{c}}=\mathrm{VNP}$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

A lower bound for general circuits

Theorem (Baur \& Strassen 1983)

Any circuit computing simultaneously $x_{1}^{d}, \ldots, x_{n}^{d}$ has size $\Omega(n \log d)$

- Each gate $a \mapsto$ new variable z_{a}
- Collect the equations characterizing the local computation of each gate, e.g., $z_{a}-\left(z_{b} \cdot z_{c}\right)=0$
- If z is an output gate, add the equation $z-1=0$
- Solutions of this system:
- Each x_{i} is mapped to a d-th root of unity
- Other variables are set by the equations.
- Bézout: the number of common roots is at most the product of the degrees of the equations
- $d^{n} \leq 2^{s}$

A lower bound for general circuits

Lemma (Baur \& Strassen 1983)

If f can be computed by a circuit of size s, then all first-order derivatives of f can be simultaneously computed by a circuit of size $O(s)$

- Simple proof by induction
- Same principle as backpropagation for neural networks

Theorem (Baur \& Strassen 1983)

Any circuit computing $x_{1}^{d+1}+\cdots+x_{n}^{d+1}$ has size $\Omega(n \log d)$

Outline

Introduction and basic definitions
Completeness of the permanent
$V / N P=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Restricted computations

- Cancellations yield efficient computations
- Efficient computations produce "wrong" monomials which then cancel out
- Monotone computations: no cancellations, exponential lower bounds for circuit size
- Multilinear computations: only produce multilinear monomials, superpolynomial lower bounds for formula size
- Non-commutative lower bounds: cancelled monomials must be in the same order, exponential lower bounds for ABPs

Outline

Introduction and basic definitions
Completeness of the permanent
$V N P_{6}=V N P$
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Basic steps

For a given model:

1. Decomposition: show that any polynomial computed by such a model is a small sum of simple building blocks polynomials: $f=\sum_{i=1}^{s} f_{i}$
2. Measure: define a sub-additive measure $\mu: K[X] \rightarrow \mathbb{R}^{+}$
3. Simple blocks: show that if g is a building block, $\mu(g)$ is small
4. Explicit hard polynomial: find f such that $\mu(f)$ is big

$$
\text { big } \leq \mu(f) \leq \mu\left(\sum_{i=1}^{s} f_{i}\right) \leq \sum_{i=1}^{s} \mu\left(f_{i}\right) \leq s \times \text { small }
$$

5. ???
6. Profit

Lower bounds for depth-3 powering circuits

For $\Sigma \wedge \Sigma$ circuits:

1. Decomposition: $f=\sum_{i=1}^{s} L_{i}^{d_{i}}, L_{i}$ a linear combination of the variables
2. Measure: $\mu_{k}(f)$: dimension of the space spanned by all partial derivatives of f of order k
3. Simple blocks: $\mu_{k}\left(L^{d}\right)=1$, because any partial derivative is proportionnal to L^{d-k}
4. Explicit hard polynomial: per

$$
\begin{aligned}
& \mu_{k}(\text { per })=\binom{n}{k}^{2} \\
& 2^{n} \leq \mu_{n / 2}(f) \leq \mu_{n / 2}\left(\sum_{i=1}^{s} L_{i}^{d_{i}}\right) \leq \sum_{i=1}^{s} \mu_{n / 2}\left(L_{i}^{d_{i}}\right) \leq s
\end{aligned}
$$

Outline

Introduction and basic definitions
Completeness of the permanent
VNP $=V$ NP
Graphical interpretation of the permanent and universality for formulas
Eliminating sums
VBP-completeness of the determinant
Structural properties
Homogenization
Depth-reduction
Lower bounds
A general lower bound
Restricted computations
Lower bound strategy
Non-commutative computations

Non-commutative setting

- $\mathbb{F}\left\{x_{1}, \ldots, x_{n}\right\rangle$: ring of non-commutative polynomials
- Non-commutative: $x_{i} x_{j} \neq x_{j} x_{i}$. Need to order the children of the x-gates.
- Non-commutative polynomial of degree $\leq d$:

$$
f=\sum_{\substack{m \in\left\{x_{1}, \ldots, x_{n}\right\}^{*} \\|m| \leq d}} \alpha_{m} \cdot m \quad\left(\alpha_{m} \in \mathbb{F}\right)
$$

Lower bounds for non-commutative ABPs

For homogeneous non-commutative ABPs:

1. Decomposition: $f=\sum_{i=1}^{w} l_{i} \cdot r_{i}$, cutting at layer k and partitioning depending on the intermediary vertex from layer k
2. Measure: $\mu_{k}(f)$: rank of the coefficient matrix with monomials of degree k for the lines and degree $n-k$ for the columns
3. Simple blocks: $\mu_{k}(I \cdot r)=1$, because the coefficient matrix is then the product of two vectors
4. Explicit hard polynomial: Pal (or per or det)

$$
\begin{aligned}
& \mu_{k}(\mathrm{Pal})=n^{k} \\
& n^{k} \leq \mu_{k}(\mathrm{Pal}) \leq \mu_{k}\left(\sum_{i=1}^{w} I_{i} \cdot r_{i}\right) \leq \sum_{i=1}^{w} \mu_{k}\left(I_{i} \cdot d_{i}\right) \leq s
\end{aligned}
$$

Decomposition

Measure: coefficient matrices

- $f=\sum_{w} \alpha_{w} \cdot w$, homogeneous, degree d, n variables

- Define matrix $M_{k}(f)$
monomials of degree $|Z|$

- Complexity measure : $\operatorname{rank}\left(M_{k}(f)\right)$.

Simple blocks

- $\Pi_{=}$
$(\{1,2, \ldots, k\},\{k+1, k+2, \ldots, d\})$

$$
\text { monomials of degree }|Y|
$$

monomials of degree $|Z|$

Explicit hard polynomial: the palindrome

- For $m \in\left\{x_{1}, \ldots, x_{n}\right\}^{*}$, write \tilde{m} for the word in reverse order

$$
\operatorname{Pal}_{d} X=\sum_{m \in\left\{x_{1}, \ldots, x_{n}\right\}^{d / 2}} m \cdot \tilde{m}
$$

- $\operatorname{Pal}_{d+1} X=\sum_{i=1}^{n} x_{i} \cdot$ Pal $_{d} X \cdot x_{i}$
- What is the matrix if we cut in the middle?

Explicit hard polynomial: the palindrome

$$
n^{d / 2} \leq \mu_{d / 2}(\mathrm{Pal}) \leq \mu_{d / 2}\left(\sum_{i=1}^{w} l_{i} \cdot r_{i}\right) \leq \sum_{i=1}^{w} \mu_{d / 2}\left(l_{i} \cdot r_{i}\right) \leq s
$$

Nisan's beautiful result

- $\Pi=(\{1,2, \ldots, k\},\{k+1, k+2, \ldots, d\})$

Theorem (Nisan, 1991)

For any homogeneous polynomial f of degree d, the size of a smallest homogeneous algebraic branching program for f is equal to

$$
\sum_{k=0}^{d} \operatorname{rank}\left(M_{k}(f)\right)
$$

Corollary

Any homogeneous $A B P$ computing the permanent has size $\geq 2^{n}$

Formal series on words and trees

- General results from the 70s imply Nisan's results and can be used to recover more recent extensions
- Provide a characterization of smallest circuit size for non-associative computations
- Does not seem to provide tools for non-commutative circuits

Now what?

- Many different open questions, in general and in restricted models
- New tools (measures)
- Completely new tools

References

- Completeness and Reduction in Algebraic Complexity Theory, Peter Bürgisser. Algorithms and Computation in Mathematics. Springer, 2000.
- Arithmetic Circuits: a survey of recent results and open questions, Amir Shpilka \& Amir Yehudayoff. Foundations and Trends in Theoretical Computer Science 2010.
https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf
- A survey of lower bounds in arithmetic circuit complexity. https://github.com/dasarpmar/lowerbounds-survey, maintained by Ramprasad Saptharishi
Quite a few statements and examples borrowed!
- Please ask for detailed explanations...

