Algebraic complexity

EPIT 2023 : Le Kaléidoscope de la Complexité

Guillaume Malod
June 12-16 2023 Oléron Island (France)

Introduction and basic definitions

Completeness of the permanent
VNP, = VNP
Graphical interpretation of the permanent and universality for formulas

Eliminating sums
VBP-completeness of the determinant

Structural properties
Homogenization

Depth-reduction

Lower bounds
A general lower bound
Restricted computations
Lower bound strategy

Non-commutative computations

1/77

Introduction and basic definitions

2/77

Representing multivariate polynomials

= Dense representation
= Sparse representation
= Arithmetic formulas: (x1 + y1) x - x (Xn + ¥n)

= Arithmetic circuits

3/77

x/+\+
N0
\WAVAN
X \y/ \z

= Size of a circuit: number of gates or edges...

= Arithmetic circuit of size 12 computing
Oy +y)(xy+y) + (xy)(y+2)((y+2) +)
= Depth: length of a longest path from root to leaf

4/77

Arithmetic formulas

X1 X1 X1 X1

= Weak model: each \Xf/ \Xf/
subcomputation can be used only
once. \\\x Z/// \\\& J///

= Underlying graph = tree. \ /

5/77

Algebraic Branching Program (ABP)

. X3
= DAG from a source s “
to asink t 5
X X2
with arcs labelled by 8 i e 5t
constants or variables. /
5 ~Z °

= Weight of a path = product of the labels.

= Polynomial computed by the ABP =
sum of the weights of all paths from s to t.

6/77

Algebraic Branching Program (ABP)

. X3
= DAG from a source s “
to asink t 5
X X2
with arcs labelled by 8 i e 5t
constants or variables. /
5 ~Z °

= Weight of a path = product of the labels.

= Polynomial computed by the ABP =
sum of the weights of all paths from s to t.

6/77

Important examples

z = (zij)1<ij<n

det(2) = Y (o) Hl Zio (i)

o€S,

per Z Hzlo(r)

oeS, i=1

n
he() = Y [lzen
oeS, i=1
o is a cycle

7/77

Small classes

= Only consider sequences of polynomials with polynomially bounded degree

= A sequence of polynomials (f,) — existence of a “small” sequence (C,)
such that C, computes f,

= VP: sequences computable by a sequence of circuits of polynomially
bounded size

= VPe: sequences computable by a sequence of formulas of polynomially
bounded size

= VBP: sequences computable by a sequence of ABPs of polynomially
bounded size

= VP, cVBP c VP

8/77

Big classes

= VNP: (f,) € VNP if 3(g,) € VP

f(2) =). &n(ze)

ee{0,1}9(n)

= For the permanent:

per(z) = Z test(€) - Ij (ZHI: E,‘,J'Z,"j)

ze{0,1}7

9/77

Big classes

« VNP: (f,) € VNP if 3(g,) € VP:

f(2)= > &nze)

ee{0,1}a(m)

= For the permanent:

per(z) =] [T (-eijews) '(.n 3 Ew')' '" (nle"’fz"’f)

= 2 \ 1<iyj,k,I<n i
3 L1 3
elo i \ T i

I
—-
.

Il
-

9/77

Big classes

= VNP: (f,) € VNP if 3(gn) € VP:
f;,(?) = Z gn(Z 5)
ee{0,1}a(m)

= For the permanent:

per(z) =), [T Q-ejew) |- ([T €| TT| 2 €z

ze(o.1} \ 1k l<n i1 j=1 i=1 \j=1
' ik iff j=I

= Intuitively, all polynomials where the coefficient function is in GapP/poly

= Exercise: show that hc ¢ VNP

= Bonus exercise: use dynamic programming to give an O(n2") circuit for
per; compare with Wikipedia (Ryser)

9/77

Classes

circuits - VP

ABP - VBP

formulas - VP,

10/77

VP versus VNP

= Main open question: VP =7 VNP
= Somewhat related to P =7 NP

Theorem (P. Biirgisser)
Under (GRH), VP = VNP over C implies P /poly = NP /poly.

= per is VNP-complete over fields of characteristic + 2
hc is VNP-complete

= det is VBP-complete

= VBP vs VNP becomes det vs per

11/77

= A polynomial fis a projection of a polynomial g if f(x) = g(a1,...,am),
where the a; are elements of the field or variables among x1, ..., X,
= A sequence (f,) is a p-projection of a sequence (g,) if there exists a

polynomially bounded function t(n) such that f, is a projection of gy, for
all n

= A sequence of polynomials (f,) € C is C-complete if any sequence of
polynomials (g,) € C is a p-projection of (f,)

12/77

Valiant’s theorem

Theorem

The sequence (per,) is VNP-complete over any field of characteristic
different from 2.

Corollary
Over any field of characteristic different from 2, VP = VNP iff per € VP.

13/77

Completeness of the permanent

14/77

Completeness proof strategy

1. VNP, = VNP
2. The permanent is universal for formulas

3. The permanent can “eliminate” boolean sums

15/77

Completeness of the permanent

VNP, = VNP

16/77

Classes defined via formulas

= (fy) € VP, if there exists a sequence of formulas (F,) of polynomially
bounded size such that F, computes f,.

= (f,) € VNP, if there exists a polynomial p and a sequence g, € VP, such
that:

()= Y &l(%9).

e{0,1}PUX)
= VP, c VP and VNP, c VNP
= Whether VP, = VP or not is still open
= Valiant showed that VNP, = VNP
= Is it enough to show that VP ¢ VNP,
= Reduction of CircuitSAT to SAT

17/77

\VAV/

N

77777

\VAV/

%

77777

77777

77777

Parse trees

a b

\/ \/
| .
| \I/

+

X

l

@ W, +
N2
+/
Figure 1: val(T) = zab

= Each parse tree computes a monomial.
= The polynomial f(z) computed by the circuit is ¥ val(T)
T

= z)=) test(e)val'(e,2)

ee{0,1}*

22/77

Completeness of the permanent

Graphical interpretation of the permanent and universality for formulas

23/77

The permanent

= If Gis a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

= If Gis a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

24/77

The permanent

= If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

= If Gis a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

24/77

The permanent

= If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

= If Gis a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

24/77

The permanent

= If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

= If Gis a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

24/77

VP, c VBP

Lemma

If fis a polynomial computed by a formula of size e, then there exists an ABP
G of size e+ 1 computing f.

25/77

VP, c VBP

Lemma

If fis a polynomial computed by a formula of size e, then there exists an ABP
G of size e+ 1 computing f.

o
I

=
X

_—= e

25/77

VP, c VBP

Lemma

If fis a polynomial computed by a formula of size e, then there exists an ABP
G of size e+ 1 computing f.

D
s

|1 | R
o
I
o

|

25/77

VP, c VBP

Lemma
If fis a polynomial computed by a formula of size e, then there exists an ABP
G of size e+ 1 computing f.

€=6 X& r : PR
e I
L , t= i
—= o 1o o
co ‘ is=s1 b t=1t
e |

25/77

The permanent is universal for ABPs

Lemma
If fis a polynomial computed by a formula of size e, then there exists an e x e
matrix M such that f= per(M).

26/77

The permanent is universal for ABPs

Lemma

If fis a polynomial computed by a formula of size e, then there exists an e x e
matrix M such that f= per(M).

26/77

The permanent is universal for ABPs

Lemma

If fis a polynomial computed by a formula of size e, then there exists an e x e
matrix M such that f= per(M).

26/77

The permanent is universal for ABPs

Lemma

If fis a polynomial computed by a formula of size e, then there exists an e x e
matrix M such that f= per(M).

26/77

Completeness of the permanent

Eliminating sums

27/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gs(X,y)) € VPe

28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,y)) € VP,
= Suppose there is only one variable yp

28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,¥)) € VP,
= Suppose there is only one variable yp
= g.(X, ¥0) is a permanent, so it is the weight of the cycle covers of a graph G

28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,¥)) € VP,
= Suppose there is only one variable yp
= g.(X, ¥0) is a permanent, so it is the weight of the cycle covers of a graph G
= We wish to compute g,(x,0) + gn(X,1) as a permanent

S 28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,y)) € VP,
= Suppose there is only one variable yp
= g.(X, ¥0) is a permanent, so it is the weight of the cycle covers of a graph G
= We wish to compute g,(x,0) + gn(X,1) as a permanent
= gn(X,0) is the sum of the weights of the cycle covers which do not use any
of the edges

S 28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,¥)) € VP,

= Suppose there is only one variable yp

= g.(X, ¥0) is a permanent, so it is the weight of the cycle covers of a graph G

= We wish to compute g,(x,0) + gn(X,1) as a permanent

= gn(X,0) is the sum of the weights of the cycle covers which do not use any
of the edges

= For each subset Sc{1,...,k}, let Ws be the weight of the cycle covers
using exactly the edges numbered in S
Then: gn(X,1) = Escqa,..ig Ws

S 28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,y)) € VPe

= Suppose there is only one variable yp
= g.(X, ¥0) is a permanent, so it is the weight of the cycle covers of a graph G
= We wish to compute gn(X,0) + gn(X,1) as a permanent

= gn(X,0) is the sum of the weights of the cycle covers which do not use any
of the edges

= For each subset Sc{1,...,k}, let Ws be the weight of the cycle covers
using exactly the edges numbered in S
Then: gn(x,1) = Y se {1, k) Ws

= With this notation, g,(x,0) is Wy

28/77

Eliminating sums

= Suppose (fp) € VNP, then f,(X) = 3 gn(X,€),
with (gn(X,y)) € VPe

= Suppose there is only one variable yp

= g.(X, ¥0) is a permanent, so it is the weight of the cycle covers of a graph G

= We wish to compute gn(X,0) + gn(X,1) as a permanent

= gn(X,0) is the sum of the weights of the cycle covers which do not use any
of the edges

= For each subset Sc{1,...,k}, let Ws be the weight of the cycle covers
using exactly the edges numbered in S
Then: g,(%,1) = Yscq1,.np Ws

= With this notation, g,(x,0) is Wy

» And g,(%,0) + gn(X%,1) =2Wp+ . Ws

Se{1,,k}
S+

28/77

The Rosette gadget

= A directed graph with 2k vertices, 3k edges and 2k loops

29/77

The Rosette gadget

= A directed graph with 2k vertices, 3k edges and 2k loops

= There are exactly two cycle covers which do not go through any of the
edges 1,2,...,k

29/77

The Rosette gadget

= A directed graph with 2k vertices, 3k edges and 2k loops

= There are exactly two cycle covers which do not go through any of the
edges 1,2,...,k

29/77

The Rosette gadget

= A directed graph with 2k vertices, 3k edges and 2k loops

= There are exactly two cycle covers which do not go through any of the
edges 1,2,...,k

= For each non-empty subset of {1,..., k} there is exactly one cycle cover
which goes through exactly the specified edges

29/77

The IFF gadget

u v u v
L EEE—]
L EEE—]
’ ’ ’ /
u v u v
G G

Lemma
The permanent of G is the sum of the weights of all cycle covers of G which

contain both edges (u,v) and (u',V) or neither.

30/77

Bringing everything together

31/77

Bringing everything together

31/77

The IFF gadget

—1/2

O >(P3 :O
u’ 1/2 -1/2 U/
O—»O
U (V)

Source: Ramprasad Saptharishi

32/77

VBP-completeness of the determinant

33/77

Universality for ABPs

» det(z) = Z €(0) 21,6(1)" " Zn,0(n)

ogeS,
= Similar to the permanent: det(z) = > sign(C) weight(C)

C a cycle cover

34/77

Universality for ABPs

L det(?) = Z E(O’) 2y 5(1) " Zn,0(n)
ogeS,
= Similar to the permanent: det(z) = > sign(C) weight(C)

C a cycle cover

34/77

Universality for ABPs

» det(z) = Z €(0) 21,6(1)" " Zn,0(n)

ogeS,

= Similar to the permanent: det(z) = > sign(C) weight(C)

C a cycle cover

= Sign of a permutation decomposed in k cycles: (—1)"”‘

= Sign of a permutation with one main cycle of length p:
(71)n + 1+(n-p) _ (71)p—1

= Multiplicative sign coming from the -1 loops: (-1)""

= Overall sign: (-1)""!

34/77

Computing the determinant

= Gaussian elimination

= Dynamic computation: too much information to keep track of, exponential
size

= A cycle cannot loop before coming back to the first vertex

= Two cycles cannot have a common vertex

35/77

CLOW sequences

= A closed walk (CLOW) of length i is a sequence of vertices ci, ¢, ..., Cj, 1
(generalization of a cycle)

= Its weight is the product of the weight of the edges

= A CLOW-sequence is a sequence Ci,..., Cx of closed walks (generalization
of a cycle cover)

= lIts length is the sum of the lengths of the C;
= Its weight is the product of the weights of the C;

= lts sign is (-1)"*
= We know that: det(z) = > sign(C) weight(C)
C a cycle cover
= We will show that: det(z) = > sign(P) weight(P)
P a CLOW sequence
of length n

36/77

Building an involution ¢

= is the identity on cycle covers

= weight(p(P)) = weight(P) and sign(¢(P)) = —sign(P), for a CLOW
sequence P which is not a cycle cover

37/77

Building an involution ¢

= is the identity on cycle covers

= weight(p(P)) = weight(P) and sign(¢(P)) = —sign(P), for a CLOW
sequence P which is not a cycle cover

VQQ

N

Source: Mahajan & Vinay

37/77

Computing the determinant

= Compute the sum of the weights of the CLOW sequences of the complete
directed graph

= [/ ¢ co,s]: sum of the weights of all partial CLOW sequences of length |,
with current vertex ¢, with current CLOW starting point ¢p and with parity
of the number of current completed CLOWsS s.

= Build a graph with 2n® vertices (1<l cco<n, se{-1.1}): one for each
tuple [/, ¢, co, s].

= Vertex [/, ¢, co, s] sends an edge to vertex [/+1,c, co, 5], with weight z.

= Vertex [/, ¢, co, s] sends an edge to vertex [/+1, ¢, ¢, —s] with weight z,

= Add a starting vertex, an end vertex, and relevant edges including for the

sign

38/77

= VBP = VNP iff the permanent polynomial can be written as the
determinant of a matrix of polynomially bounded size

39/77

Structural properties

40/77

Cancellations

= Cancellations are useful
= How much?

= Is it useful to produce non-multilinear monomials when computing a
multilinear polynomial?

= Is it useful to compute higher-degree monomials and then cancel them out?

= Is is useful to produce non-homogeneous polynomials when computing an
homogeneous polynomial?

= Answer may depend on the computation model (formula, ABP, circuit)

41/77

Structural properties

Homogenization

42/77

Homogenization of circuits

= A circuit Cis said to be homogeneous if every gate in the circuit computes
a homogeneous polynomial

Lemma

Let f be an n-variate degree d polynomial computed by a circuit C of size s.
Then there is a homogeneous arithmetic circuit C', of size at most O(sd?),
that computes the homogeneous components of f

= For every gate ge C, define (d+1) gates g, ... g9

= We will build a new circuit C' such that g<i) computes the degree |
homogeneous component of the polynomial computed at g.

= If a gate g has children h; and hy in C, then C has the following
connections depending on the type of g

g=h+h — g(") = hii) dL héi) for all i
g=hxh — g7 = SHOWD foralli
j=0

43/77

Homogenization of ABPs

o X3
N
5
X X2
s 5 . t
P :
5 ~7 °

44/77

Homogenization of ABPs

o X3
by
5
X2
ST— > . °
5 ~ °

X2
7 t
P\
X1+ X2 + X3
2 W
» 1
5 2
X3 —X2
S—Mm» o———»
\ s

44/77

Homogenization of ABPs

= Similar idea applied to an ABP A
0)

= Create a new ABP A’ with vertices v, ..., u(?

-0 will compute the
homogeneous component of degree i of the polynomial computed at vin A

= Connect the new vertices by induction, starting from the source s

u(®
u u(D
uld) w(®)
w wD
W0 w9
v Wi-1)
WD)

45/77

Homogenization of ABPs

= Similar idea applied to an ABP A

= Create a new ABP A’ with vertices u(o), ey oD D will compute the
homogeneous component of degree i of the polynomial computed at vin A

= Connect the new vertices by induction, starting from the source s

= If a vertex w receives an edge labeled with a constant a from the vertex u

then w'” must receive an edge labeled with « from the vertex u?

u(®
u u(D
\ (@ \ w(0)
w wD
v(0) w(d)
v Wi-1)
W)

45/77

Homogenization of ABPs

= Similar idea applied to an ABP A

= Create a new ABP A’ with vertices u(o), ey oD D will compute the
homogeneous component of degree i of the polynomial computed at vin A

= Connect the new vertices by induction, starting from the source s

= If a vertex w receives an edge labeled with a constant a from the vertex u
then w'” must receive an edge labeled with « from the vertex u?

= If a vertex w receives an edge labeled with a variable z from the vertex v

then w(”) must receive an edge labeled with z from the vertex ulD
FO)
u u(D
\ (@ \ w(0)
w wD
/ 0 e
v Wi-1)
A

45/77

Homogenization of ABPs

= Arrange the vertices by “level”: all vertices of the form w' are on level i
= Edges can be inside a level or from one level to the next
= All the paths must visit at least one vertex by level

= The sum of the weights of the paths from a vertex in level j to a vertex in
level i+ 1 is a linear form

= Delete all edges and add edges between levels, with linear forms

46/77

ABPs and iterated matrix multiplication

_ (1) (2) (3) (d-1) (d)
IMM,,q4 = . Z X X Xia s a2 -1 a1
1<y, 0jg—15n

L () Se—Ti14)
X P I

i1 in,j;+:1
® ® ®

47/77

Homogenization of formulas: interpolation

= If a circuit C computes a polynomial P(xi,...,Xa,y) with deg, P=d
o P(xt,..xmy) = Po(Xi,. .oy Xa) + PL(xt, .o xn)y + -+ Pa(Xa, ..., Xn)y?
= Fix distinct scalars ap,...,aqg€F

= Each of the Pj(x1,...,xn) can be expressed as a linear combination of
{P(X1,. .y Xny@0), ooy P(X1,. .y Xny) }

= If Pis computable by a size s circuit from some class C, then each P; is
computable by a size O(sd) circuit from the class XC

= If Pis computable by a size s formula, then each P; is computable by a
size O(sd) formula

48/77

Homogenization of formulas: interpolation

P(x1, ..., %n,y) = Po(X1y. ..y %) + Pr(xa, ..., xn)y+ -+ Pd(xh...,x,,)yd

1 ay - af Py P(ao)
1 ap - Oé? P _ P(al)
1 oy - af Py P(ag)
Po Boo Bor - Pod P(ao)
P _ B Pu - Pid P(az)
P4 Bawo Bar - Bdd P(oa)
Pi(x1, ... xn) = BoP(Xt, - .., Xn,) + - + BaP(X, - . -, Xn,).

49/77

Homogenization of formulas

w P(x1,...,%) = Qo+ + Qg

= Consider the polynomial P'(x1,...,%n,y) = P(yx1,...,yxn)

= Then: P(xi,...,x:) = Qo+ yQ1+ -+ Qq

= Computing higher degrees gives no advantage for formulas

= But it is unknown if homogeneous formulas are as powerful as general ones
= Exercise: Give a polynomial-size formula for:

Z XiXi, and Z m

1<iy<ip<-++<ig<n me{deg. d monomials}

Lemma (Raz 2010)

Let ® be a formula of size s computing an n-variate homogeneous polynomial
f of degree d. Then there is an homogeneous formula ®' computing f of size

at most poly (s, (d“;’gs)).

In particular, if d = O(log n) and n = poly(n) then we have size(®") = poly(n)
as well.

50/77

Structural properties

Depth-reduction

51/77

Depth-reduction for formulas

Lemma (Brent 1974)

Let f be an n-variate degree d polynomial computed by an arithmetic formula
® of size s. Then f can also be computed by a formula ®' of size

s’ = poly(s, n,d) and depth O(logs).

52/77

Depth-reduction for circuits and ABPs

Theorem (Valiant, Skyum, Berkowitz, Rackoff 1983)

Let f be an n-variate degree d polynomial computed by an arithmetic circuit
® of size s. Then there is an arithmetic circuit ' computing f of size

s’ = poly(s, n,d) and depth O(logd).

= In the resulting circuit the additions have unbounded fan-in
= It is enough to prove lower bounds for such log-depth circuits

= Easy to prove for ABPs

53/77

Depth-reduction for ABPs

= Compute IMM with a log d-depth formula where gates compute matrix
products

= Implementing each matrix-product gate with arithmetic operations can be
done in constant depth if we use unbounded fan-in addition gates

A NVAN
VAN ANVANYAY

54/77

Depth-reduction to constant depth

= |f multiplication gates have =
fan-in 2, constant-depth I /H’/ \\ .
circuits can only compute /’/ X\
constant-degree w7
polynomials /'/ '\'\

= We consider depth-4

I nm_ - I
circuits of a special form: /‘/ ’r\\
x koo y

XMxn

Theorem
Let f be an n-variate degree d polynomial computed by a size s arithmetic
circuit. Then for any 0 < t < d, f can be equivalently computed by a

o(d/t) O(t+d/t)

homogeneous >Nt circuit of top fan-in s and size s

55/77

Lower bounds

56/77

Lower bounds

A general lower bound

57/77

A lower bound for general circuits

Theorem (Baur & Strassen 1983)

Any circuit computing simultaneously Xi,...,x% has size Q(nlog d)

= Each gate a — new variable z,

= Collect the equations characterizing the local computation of each gate,
g, z—(zpb-2:)=0

= If zis an output gate, add the equation z—1=0

= Solutions of this system:

= Each x; is mapped to a d-th root of unity
= Other variables are set by the equations.

= Bézout: the number of common roots is at most the product of the
degrees of the equations

= d"<2°

58/77

A lower bound for general circuits

Lemma (Baur & Strassen 1983)
If f can be computed by a circuit of size s, then all first-order derivatives of f
can be simultaneously computed by a circuit of size O(s)

= Simple proof by induction

= Same principle as backpropagation for neural networks

Theorem (Baur & Strassen 1983)

Any circuit computing X{ + - + x3*1 has size Q(nlog d)

59/77

Lower bounds

Restricted computations

60/77

Restricted computations

= Cancellations yield efficient computations
= Efficient computations produce “wrong” monomials which then cancel out

= Monotone computations: no cancellations, exponential lower bounds for

circuit size

= Multilinear computations: only produce multilinear monomials,
superpolynomial lower bounds for formula size

= Non-commutative lower bounds: cancelled monomials must be in the same

order, exponential lower bounds for ABPs

62/77

Lower bounds

Lower bound strategy

63/77

For a given model:

1.

Decomposition: show that any polynomial computed by such a model is a
small sum of simple building blocks polynomials: f= 337 f;

Measure: define a sub-additive measure p: K[X] — R"

Simple blocks: show that if g is a building block, u(g) is small
Explicit hard polynomial: find fsuch that u(f) is big

big < u(f) < u(Xiif) < Xiq p(fi) <sx small

277

Profit

64/77

Lower bounds for depth-3 powering circuits

For X A X circuits:

1. Decomposition: f= 37, L?", L; a linear combination of the variables

2. Measure: uk(f): dimension of the space spanned by all partial derivatives
of fof order k

3. Simple blocks: pux(LY) = 1, because any partial derivative is proportionnal
to LTK

4. Explicit hard polynomial: per
N2
ui(per) = (})
n s d; s d;
2" < punpp(F) < prnp2(E7g L) < Eig pnpe (L) < s

65/77

Lower bounds

Non-commutative computations

66/77

Non-commutative setting

= F(x1,...,Xp): ring of non-commutative polynomials
= Non-commutative: x;x; # x;x;. Need to order the children of the x-gates.

= Non-commutative polynomial of degree < d:

fis > amm (ameF)

67/77

Lower bounds for non-commutative ABPs

For homogeneous non-commutative ABPs:
1. Decomposition: f= Y1, l;- rj, cutting at layer k and partitioning depending
on the intermediary vertex from layer k

2. Measure: uk(f): rank of the coefficient matrix with monomials of degree k

for the lines and degree n— k for the columns

3. Simple blocks: pk(/-r) =1, because the coefficient matrix is then the
product of two vectors

4. Explicit hard polynomial: Pal (or per or det)
px(Pal) = n*
n* < pi(Pal) < (S - ri) < B gl d) <'s

68/77

layer k
° \/ ! Q t
Ly Vit Ry

69/77

Measure: coefficient matrices

= f=3 a,.w, homogeneous, degree monomials of degree |Z]
w
d, n variables = w2
—_— U
Q |
(9] |
& I
() |
K d-k o !
—A N © WMip---- Qwywy
I | o
8
£
o
<
o
£

= Define matrix M(f)

= Complexity measure : rank(M(f)).

70/77

Lk Rk
= = monomials of degree |Z|
({1,2,...,k},{k+1,k+2,...,d}) = my
o 1
2 |
a0 |
(<)) |
© I
“6 i |p==== am
1]
8
£
k d—k 2
/_H—/% =
[| £

71/77

Explicit hard polynomial: the palindrome

= For me {xi,... ,Xn}*, write m for the word in reverse order
Paly X = Z m-m

L] Pald+1 X = 27:1 X PaIdX- Xi

= What is the matrix if we cut in the middle?

72/77

Explicit hard polynomial: the palindrome

nd/2 < ,ud/2(Pa|) < Md/Q(ZI, r,-) < Z/Jd/g(li' r/) <s

i=1 i=1

73/77

Nisan’s beautiful result

e M=({1,2,....k}{k+1,k+2,...,d})

Theorem (Nisan, 1991)

For any homogeneous polynomial f of degree d, the size of a smallest
homogeneous algebraic branching program for f is equal to

d
‘(Z:%rank(l\/lk(f))

Corollary

Any homogeneous ABP computing the permanent has size > 2"

74/77

Formal series on words and trees

= General results from the 70s imply Nisan's results and can be used to
recover more recent extensions

= Provide a characterization of smallest circuit size for non-associative
computations

= Does not seem to provide tools for non-commutative circuits

75/77

= Many different open questions, in general and in restricted models
= New tools (measures)

= Completely new tools

76/77

References

= Completeness and Reduction in Algebraic Complexity Theory, Peter
Biirgisser. Algorithms and Computation in Mathematics. Springer, 2000.

= Arithmetic Circuits: a survey of recent results and open questions, Amir
Shpilka & Amir Yehudayoff. Foundations and Trends in Theoretical
Computer Science 2010.
https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf

= A survey of lower bounds in arithmetic circuit complexity.
https://github.com/dasarpmar/lowerbounds-survey, maintained by
Ramprasad Saptharishi
Quite a few statements and examples borrowed!

= Please ask for detailed explanations...

7777

https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf
https://github.com/dasarpmar/lowerbounds-survey

	Introduction and basic definitions
	Completeness of the permanent
	VNPe= VNP
	Graphical interpretation of the permanent and universality for formulas
	Eliminating sums

	VBP-completeness of the determinant
	Structural properties
	Homogenization
	Depth-reduction

	Lower bounds
	A general lower bound
	Restricted computations
	Lower bound strategy
	Non-commutative computations

