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Representing multivariate polynomials

• Dense representation
• Sparse representation
• Arithmetic formulas: (x1 + y1) ×⋯ × (xn + yn)

• Arithmetic circuits
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Arithmetic circuits

x y z

× + π

+ × +

× +

+

• Size of a circuit: number of gates or edges...
• Arithmetic circuit of size 12 computing
(xy + y)(xy + y) + (xy)(y + z)((y + z) + π)

• Depth: length of a longest path from root to leaf
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Arithmetic formulas

• Weak model: each
subcomputation can be used only
once.

• Underlying graph = tree.
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Algebraic Branching Program (ABP)

• DAG from a source s
to a sink t
with arcs labelled by
constants or variables.

s t
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−1

• Weight of a path = product of the labels.

• Polynomial computed by the ABP =
sum of the weights of all paths from s to t.
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Important examples

z̄ = (zi,j)1≤i,j≤n

det(z̄) = ∑
σ∈Sn

ϵ(σ)
n
∏
i=1

zi,σ(i)

per(z̄) = ∑
σ∈Sn

n
∏
i=1

zi,σ(i)

hc(z̄) = ∑
σ∈Sn

σ is a cycle

n
∏
i=1

zi,σ(i)
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Small classes

• Only consider sequences of polynomials with polynomially bounded degree
• A sequence of polynomials (fn) → existence of a “small” sequence (Cn)

such that Cn computes fn

• VP: sequences computable by a sequence of circuits of polynomially
bounded size

• VPe: sequences computable by a sequence of formulas of polynomially
bounded size

• VBP: sequences computable by a sequence of ABPs of polynomially
bounded size

• VPe ⊆ VBP ⊆ VP
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Big classes

• VNP: (fn) ∈ VNP if ∃(gn) ∈ VP:

fn(z̄) = ∑
ϵ∈{0,1}q(n)

gn(z̄, ϵ)

• For the permanent:

per(z̄) = ∑
ϵ̄∈{0,1}n2

test(ϵ̄) ⋅
n
∏
i=1

⎛
⎝

n
∑
j=1

ϵi,jzi,j
⎞
⎠

• Intuitively, all polynomials where the coefficient function is in GapP/poly
• Exercise: show that hc ∈ VNP
• Bonus exercise: use dynamic programming to give an O(n2n) circuit for

per; compare with Wikipedia (Ryser)
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Classes

formulas - VPe

ABP - VBP

circuits - VP

VNP
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VP versus VNP

• Main open question: VP =? VNP
• Somewhat related to P =? NP

Theorem (P. Bürgisser)
Under (GRH), VP = VNP over C implies P/poly = NP/poly.

• per is VNP-complete over fields of characteristic ≠ 2
• hc is VNP-complete
• det is VBP-complete
• VBP vs VNP becomes det vs per
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Reductions

• A polynomial f is a projection of a polynomial g if f(x̄) = g(a1, . . . , am),
where the ai are elements of the field or variables among x1, . . . , xn

• A sequence (fn) is a p-projection of a sequence (gn) if there exists a
polynomially bounded function t(n) such that fn is a projection of gt(n) for
all n

• A sequence of polynomials (fn) ∈ C is C-complete if any sequence of
polynomials (gn) ∈ C is a p-projection of (fn)
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Valiant’s theorem

Theorem

The sequence (pern) is VNP-complete over any field of characteristic
different from 2.

Corollary
Over any field of characteristic different from 2, VP = VNP iff per ∈ VP.
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Completeness proof strategy

1. VNPe = VNP
2. The permanent is universal for formulas
3. The permanent can “eliminate” boolean sums
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Classes defined via formulas

• (fn) ∈ VPe if there exists a sequence of formulas (Fn) of polynomially
bounded size such that Fn computes fn.

• (fn) ∈ VNPe if there exists a polynomial p and a sequence gn ∈ VPe such
that:

fn(x̄) = ∑
ϵ̄∈{0,1}p(∣x̄∣)

gn(x̄, ϵ̄).

• VPe ⊆ VP and VNPe ⊆ VNP
• Whether VPe = VP or not is still open
• Valiant showed that VNPe = VNP
• Is it enough to show that VP ⊆ VNPe

• Reduction of CircuitSAT to SAT

17/77



Parse trees

+

× × ×
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Parse trees

+

× × ×

z w + +

× ×

a b c

+

×

z +

×

a b

Figure 1: val(T) = zab

• Each parse tree computes a monomial.
• The polynomial f(z) computed by the circuit is ∑

T
val(T)

• f(z) = ∑
ϵ̄∈{0,1}s

test(ϵ̄)val′(ϵ, z)
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The permanent

• If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

• If G is a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

24/77



The permanent

• If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

• If G is a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

G

24/77



The permanent

• If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

• If G is a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

G

24/77



The permanent

• If G is a bipartite graph, the permanent of its adjacency matrix counts the
number of perfect matchings of G

• If G is a directed graph with a weight function on the edges, the permanent
of its adjacency matrix is the sum of the weight of the cycle covers of G

3 x
y z

−1k
G

24/77



VPe ⊆ VBP

Lemma
If f is a polynomial computed by a formula of size e, then there exists an ABP
G of size e + 1 computing f.
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VPe ⊆ VBP

Lemma
If f is a polynomial computed by a formula of size e, then there exists an ABP
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t
e = 1: x x

s
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VPe ⊆ VBP

Lemma
If f is a polynomial computed by a formula of size e, then there exists an ABP
G of size e + 1 computing f.

t = t1 = t2

e = e1 + e2:

e2

e1

s

s2

s1

+

G1

G2
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VPe ⊆ VBP

Lemma
If f is a polynomial computed by a formula of size e, then there exists an ABP
G of size e + 1 computing f.

G2

e2

e1
e = e1 × e2:

×
t = t2

t1 = s2

s = s1

G1
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The permanent is universal for ABPs

Lemma
If f is a polynomial computed by a formula of size e, then there exists an e × e
matrix M such that f = per(M).
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Eliminating sums

• Suppose (fn) ∈ VNP, then fn(x̄) = ∑ϵ̄ gn(x̄, ϵ̄),
with (gn(x̄, ȳ)) ∈ VPe

• Suppose there is only one variable y0

• gn(x̄, y0) is a permanent, so it is the weight of the cycle covers of a graph G
• We wish to compute gn(x̄,0) + gn(x̄,1) as a permanent
• gn(x̄,0) is the sum of the weights of the cycle covers which do not use any

of the edges
• For each subset S ⊆ {1, . . . , k}, let WS be the weight of the cycle covers

using exactly the edges numbered in S
Then: gn(x̄,1) = ∑S⊆{1,⋯,k}WS

• With this notation, gn(x̄,0) is W∅

• And gn(x̄,0) + gn(x̄,1) = 2W∅ + ∑
S⊆{1,⋯,k}

S≠∅

WS
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The Rosette gadget

• A directed graph with 2k vertices, 3k edges and 2k loops

• There are exactly two cycle covers which do not go through any of the
edges 1,2, . . . , k

• For each non-empty subset of {1, . . . , k} there is exactly one cycle cover
which goes through exactly the specified edges

1
2 k
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The IFF gadget

G′

u

u′

v

v′

G

IFF

u

u′

v

v′

Lemma
The permanent of G′ is the sum of the weights of all cycle covers of G which
contain both edges (u, v) and (u′, v′) or neither.
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Bringing everything together

1

2 k
1

G
k2
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2 k
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G
k2

1
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The IFF gadget

Source: Ramprasad Saptharishi
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Universality for ABPs

• det(z̄) = ∑
σ∈Sn

ϵ(σ) z1,σ(1)⋯zn,σ(n)

• Similar to the permanent: det(z̄) = ∑
C a cycle cover

sign(C) weight(C)

• Sign of a permutation decomposed in k cycles: (−1)n+k

• Sign of a permutation with one main cycle of length p:
(−1)n + 1+(n−p) = (−1)p−1

• Multiplicative sign coming from the −1 loops: (−1)n−p

• Overall sign: (−1)n−1

G

s = t
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Computing the determinant

• Gaussian elimination
• Dynamic computation: too much information to keep track of, exponential

size
• A cycle cannot loop before coming back to the first vertex
• Two cycles cannot have a common vertex
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CLOW sequences

• A closed walk (CLOW) of length i is a sequence of vertices c1, c2, . . . , ci, c1

(generalization of a cycle)
• Its weight is the product of the weight of the edges
• A CLOW-sequence is a sequence C1, . . . ,Ck of closed walks (generalization

of a cycle cover)
• Its length is the sum of the lengths of the Ci

• Its weight is the product of the weights of the Ci

• Its sign is (−1)n+k

• We know that: det(z̄) = ∑
C a cycle cover

sign(C) weight(C)

• We will show that: det(z̄) = ∑
P a CLOW sequence

of length n

sign(P) weight(P)
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Building an involution φ

• φ is the identity on cycle covers
• weight(φ(P)) = weight(P) and sign(φ(P)) = −sign(P), for a CLOW

sequence P which is not a cycle cover

478 MEENA MAHAJAN AND V. VINAY

CASE 1 CASE 2

head

v

v

head

v

Fig. 3.1. Pairing clow sequences of opposing signs.

Theorem 3.2 (see [15, Theorem 1]).

cl = (−1)l
∑

C is an l-clow sequence

sgn(C)wt(C).

Proof. We construct an involution ϕ on the set of l-clow sequences. The involution
has the property that ϕ2 is the identity, ϕmaps an l-cycle cover to itself, and otherwise
C and ϕ(C) have the same weight but opposing signs. This shows that the contribution
of l-clow sequences that are not l-cycle covers is zero. Consequently, only l-cycle covers
contribute to the summation, yielding exactly cl.

Let C = 〈C1, . . . , Ck〉 be an l-clow sequence. Choose the smallest i such that Ci+1

to Ck is a p-cycle cover for some p. If i = 0, the involution maps C to itself. Otherwise,
having chosen i, traverse Ci starting from h(Ci) until one of two things happen.

1. We hit a vertex that touches one of Ci+1 to Ck.
2. We hit a vertex that completes a cycle within Ci.

Let us call the vertex v. Given the way we chose i, such a v must exist. Vertex v
cannot satisfy both of the above conditions.

Case 1. Suppose v touches Cj . Map C to a clow sequence

C′ = 〈C1, . . . , Ci−1, C
′
i, Ci+1, . . . , Cj−1, Cj+1, . . . Ck〉.

The modified clow, C ′
i is obtained from Ci by inserting the cycle Cj into it at the first

occurence of v.
Case 2. Suppose v completes a simple cycle C in Ci. Cycle C must be disjoint

from all the later cycles. We now modify the sequence C by deleting C from Ci and
introducing C as a new clow in an appropriate position, depending on the minimum
labeled vertex in C, which we make the head of C.

Figure 3.1 illustrates the mapping.
In both of the above cases, the new sequence constructed maps back to the original

sequence in the opposite case. Furthermore, the number of clows in the two sequences

Source: Mahajan & Vinay
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Computing the determinant

• Compute the sum of the weights of the CLOW sequences of the complete
directed graph

• [l, c, c0, s]: sum of the weights of all partial CLOW sequences of length l,
with current vertex c, with current CLOW starting point c0 and with parity
of the number of current completed CLOWs s.

• Build a graph with 2n3 vertices (1 ≤ l, c, c0 ≤ n, s ∈ {−1.1}): one for each
tuple [l, c, c0, s].

• Vertex [l, c, c0, s] sends an edge to vertex [l + 1, c′, c0, s], with weight zcc′

• Vertex [l, c, c0, s] sends an edge to vertex [l + 1, c′0, c′0,−s] with weight zcc0

• Add a starting vertex, an end vertex, and relevant edges including for the
sign
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Slogan

• VBP = VNP iff the permanent polynomial can be written as the
determinant of a matrix of polynomially bounded size
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Cancellations

• Cancellations are useful
• How much?
• Is it useful to produce non-multilinear monomials when computing a

multilinear polynomial?
• Is it useful to compute higher-degree monomials and then cancel them out?
• Is is useful to produce non-homogeneous polynomials when computing an

homogeneous polynomial?
• Answer may depend on the computation model (formula, ABP, circuit)
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Homogenization of circuits

• A circuit C is said to be homogeneous if every gate in the circuit computes
a homogeneous polynomial

Lemma
Let f be an n-variate degree d polynomial computed by a circuit C of size s.
Then there is a homogeneous arithmetic circuit C′, of size at most O(sd2),
that computes the homogeneous components of f

• For every gate g ∈ C, define (d + 1) gates g(0), . . . , g(d)

• We will build a new circuit C′ such that g(i) computes the degree i
homogeneous component of the polynomial computed at g.

• If a gate g has children h1 and h2 in C, then C′ has the following
connections depending on the type of g:

g = h1 + h2 Ô⇒ g(i) = h(i)1 + h(i)2 for all i

g = h1 × h2 Ô⇒ g(i) =
i
∑
j=0

h(j)1 h(i−j)
2 for all i
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Homogenization of ABPs
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Homogenization of ABPs

• Similar idea applied to an ABP A
• Create a new ABP A′ with vertices u(0), . . . ,u(d): u(i) will compute the

homogeneous component of degree i of the polynomial computed at u in A
• Connect the new vertices by induction, starting from the source s

• If a vertex w receives an edge labeled with a constant α from the vertex u
then w(i) must receive an edge labeled with α from the vertex u(i)

• If a vertex w receives an edge labeled with a variable z from the vertex v
then w(i) must receive an edge labeled with z from the vertex u(i−1)

v

u

w

v(0)

v(i−1)

v(d)

u(0)

u(i)

u(d)

u(0)

u(i)

u(d) w(0)

w(i)

w(d)
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Homogenization of ABPs

• Arrange the vertices by “level”: all vertices of the form wi are on level i
• Edges can be inside a level or from one level to the next
• All the paths must visit at least one vertex by level
• The sum of the weights of the paths from a vertex in level i to a vertex in

level i + 1 is a linear form
• Delete all edges and add edges between levels, with linear forms
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ABPs and iterated matrix multiplication

IMMn,d = ∑
1≤j1,...,jd−1≤n

x(1)j1 x(2)j1,j2 x(3)j2,j3⋯x(d−1)
jd−2,jd−1

x(d)jd−1
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Homogenization of formulas: interpolation

• If a circuit C computes a polynomial P(x1, . . . , xn, y) with degy P = d
• P(x1, . . . , xn, y) = P0(x1, . . . , xn) + P1(x1, . . . , xn)y +⋯ +Pd(x1, . . . , xn)yd

• Fix distinct scalars α0, . . . , αd ∈ F

• Each of the Pi(x1, . . . , xn) can be expressed as a linear combination of
{P(x1, . . . , xn, α0), . . . ,P(x1, . . . , xn, αd)}

• If P is computable by a size s circuit from some class C, then each Pi is
computable by a size O(sd) circuit from the class ΣC

• If P is computable by a size s formula, then each Pi is computable by a
size O(sd) formula
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Homogenization of formulas: interpolation

P(x1, . . . , xn, y) = P0(x1, . . . , xn) + P1(x1, . . . , xn)y +⋯ +Pd(x1, . . . , xn)yd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α0 ⋯ αd
0

1 α1 ⋯ αd
1

⋮ ⋮ ⋱ ⋮
1 αd ⋯ αd

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0

P1

⋮
Pd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(α0)
P(α1)
⋮

P(αd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0

P1

⋮
Pd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β00 β01 ⋯ β0d

β10 β11 ⋯ β1d

⋮ ⋮ ⋱ ⋮
βd0 βd1 ⋯ βdd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(α0)
P(α1)
⋮

P(αd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pi(x1, . . . , xn) = β0P(x1, . . . , xn, α0) +⋯ + βdP(x1, . . . , xn, αd).
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Homogenization of formulas

• P(x1, . . . , xn) = Q0 +⋯ +Qd

• Consider the polynomial P′(x1, . . . , xn, y) ∶= P(yx1, . . . , yxn)

• Then: P′(x1, . . . , xn) = Q0 + yQ1 +⋯ + ydQd

• Computing higher degrees gives no advantage for formulas
• But it is unknown if homogeneous formulas are as powerful as general ones
• Exercise: Give a polynomial-size formula for:

∑
1≤i1<i2<⋯<id≤n

xi1⋯xid and ∑
m∈{deg. d monomials}

m

Lemma (Raz 2010)
Let Φ be a formula of size s computing an n-variate homogeneous polynomial
f of degree d. Then there is an homogeneous formula Φ′ computing f of size
at most poly (s, (d+log s

d )).

In particular, if d = O(log n) and n = poly(n) then we have size(Φ′) = poly(n)
as well.
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Depth-reduction for formulas

Lemma (Brent 1974)
Let f be an n-variate degree d polynomial computed by an arithmetic formula
Φ of size s. Then f can also be computed by a formula Φ′ of size
s′ = poly(s,n,d) and depth O(log s).
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Depth-reduction for circuits and ABPs

Theorem (Valiant, Skyum, Berkowitz, Rackoff 1983)
Let f be an n-variate degree d polynomial computed by an arithmetic circuit
Φ of size s. Then there is an arithmetic circuit Φ′ computing f of size
s′ = poly(s,n,d) and depth O(log d).

• In the resulting circuit the additions have unbounded fan-in
• It is enough to prove lower bounds for such log-depth circuits
• Easy to prove for ABPs
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Depth-reduction for ABPs

• Compute IMM with a log d-depth formula where gates compute matrix
products

• Implementing each matrix-product gate with arithmetic operations can be
done in constant depth if we use unbounded fan-in addition gates

X1 X2 . . . . . . . . . . . . . . . Xd

× × × ×

× ×

×
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Depth-reduction to constant depth

• If multiplication gates have
fan-in 2, constant-depth
circuits can only compute
constant-degree
polynomials

• We consider depth-4
circuits of a special form:
ΣΠΣΠ

Theorem
Let f be an n-variate degree d polynomial computed by a size s arithmetic
circuit. Then for any 0 < t ≤ d, f can be equivalently computed by a
homogeneous ΣΠΣΠ[t] circuit of top fan-in sO(d/t) and size sO(t+d/t).
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A lower bound for general circuits

Theorem (Baur & Strassen 1983)
Any circuit computing simultaneously xd

1, . . . , xd
n has size Ω(n log d)

• Each gate a ↦ new variable za

• Collect the equations characterizing the local computation of each gate,
e.g., za − (zb ⋅ zc) = 0

• If z is an output gate, add the equation z − 1 = 0
• Solutions of this system:

• Each xi is mapped to a d-th root of unity
• Other variables are set by the equations.

• Bézout: the number of common roots is at most the product of the
degrees of the equations

• dn ≤ 2s
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A lower bound for general circuits

Lemma (Baur & Strassen 1983)
If f can be computed by a circuit of size s, then all first-order derivatives of f
can be simultaneously computed by a circuit of size O(s)

• Simple proof by induction
• Same principle as backpropagation for neural networks

Theorem (Baur & Strassen 1983)
Any circuit computing xd+1

1 +⋯ + xd+1
n has size Ω(n log d)
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Restricted computations

• Cancellations yield efficient computations
• Efficient computations produce “wrong” monomials which then cancel out
• Monotone computations: no cancellations, exponential lower bounds for

circuit size
• Multilinear computations: only produce multilinear monomials,

superpolynomial lower bounds for formula size
• Non-commutative lower bounds: cancelled monomials must be in the same

order, exponential lower bounds for ABPs
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Basic steps

For a given model:

1. Decomposition: show that any polynomial computed by such a model is a
small sum of simple building blocks polynomials: f = ∑s

i=1 fi

2. Measure: define a sub-additive measure µ ∶ K[X]→ R+

3. Simple blocks: show that if g is a building block, µ(g) is small
4. Explicit hard polynomial: find f such that µ(f) is big

big ≤ µ(f) ≤ µ(∑s
i=1 fi) ≤ ∑s

i=1 µ(fi) ≤ s × small
5. ???
6. Profit
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Lower bounds for depth-3 powering circuits

For Σ⋀Σ circuits:

1. Decomposition: f = ∑s
i=1 Ldi

i , Li a linear combination of the variables
2. Measure: µk(f): dimension of the space spanned by all partial derivatives

of f of order k
3. Simple blocks: µk(Ld) = 1, because any partial derivative is proportionnal

to Ld−k

4. Explicit hard polynomial: per

µk(per) = (nk)
2

2n ≤ µn/2(f) ≤ µn/2(∑s
i=1 Ldi

i ) ≤ ∑
s
i=1 µn/2(Ldi

i ) ≤ s
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Non-commutative setting

• F⟨x1, . . . , xn⟩: ring of non-commutative polynomials
• Non-commutative: xixj ≠ xjxi. Need to order the children of the ×-gates.
• Non-commutative polynomial of degree ≤ d:

f = ∑
m∈{x1,...,xn}∗

∣m∣≤d

αm.m (αm ∈ F)
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Lower bounds for non-commutative ABPs

For homogeneous non-commutative ABPs:

1. Decomposition: f = ∑w
i=1 li ⋅ ri, cutting at layer k and partitioning depending

on the intermediary vertex from layer k
2. Measure: µk(f): rank of the coefficient matrix with monomials of degree k

for the lines and degree n − k for the columns
3. Simple blocks: µk(l ⋅ r) = 1, because the coefficient matrix is then the

product of two vectors
4. Explicit hard polynomial: Pal (or per or det)

µk(Pal) = nk

nk ≤ µk(Pal) ≤ µk(∑w
i=1 li ⋅ ri) ≤ ∑w

i=1 µk(li ⋅ di) ≤ s
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Decomposition

layer k

s t

v1

vi

vtLk Rk
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Measure: coefficient matrices

• f = ∑
w
αw.w, homogeneous, degree

d, n variables

k d − k

• Define matrix Mk(f)

αw1w2w1

w2

monomials of degree ∣Z∣

m
on

om
ia

ls
of

de
gr

ee
∣Y
∣

• Complexity measure : rank(Mk(f)).
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Simple blocks

layer k

s tvi

Lk Rk

• Π =
({1,2, . . . , k},{k + 1, k + 2, . . . ,d})

k d − k

αmm1

m2

monomials of degree ∣Z∣

m
on

om
ia

ls
of

de
gr

ee
∣Y
∣
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Explicit hard polynomial: the palindrome

• For m ∈ {x1, . . . , xn}∗, write m̃ for the word in reverse order

Pald X = ∑
m∈{x1,...,xn}d/2

m ⋅ m̃

• Pald+1 X = ∑n
i=1 xi ⋅ Pald X ⋅ xi

• What is the matrix if we cut in the middle?
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Explicit hard polynomial: the palindrome

1

1

1

m

m̃

nd/2 ≤ µd/2(Pal) ≤ µd/2(
w
∑
i=1

li ⋅ ri) ≤
w
∑
i=1

µd/2(li ⋅ ri) ≤ s
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Nisan’s beautiful result

• Π = ({1,2, . . . , k},{k + 1, k + 2, . . . ,d})

k d − k

Theorem (Nisan, 1991)
For any homogeneous polynomial f of degree d, the size of a smallest
homogeneous algebraic branching program for f is equal to

d
∑
k=0

rank(Mk(f))

Corollary
Any homogeneous ABP computing the permanent has size ≥ 2n
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Formal series on words and trees

• General results from the 70s imply Nisan’s results and can be used to
recover more recent extensions

• Provide a characterization of smallest circuit size for non-associative
computations

• Does not seem to provide tools for non-commutative circuits

75/77



Now what?

• Many different open questions, in general and in restricted models
• New tools (measures)
• Completely new tools
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• Please ask for detailed explanations...
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